期刊文献+
共找到309篇文章
< 1 2 16 >
每页显示 20 50 100
基于多尺度通道注意力卷积神经网络的轴向柱塞泵故障诊断研究
1
作者 刘增光 张帅迪 +3 位作者 周焱 魏列江 岳大灵 冯珂 《机床与液压》 北大核心 2025年第14期124-130,共7页
针对传统多尺度卷积神经网络对不同尺度的特征只是简单拼接而未考虑特征差异的问题,提出一种基于多尺度通道注意力卷积神经网络(MSCA-CNN)的轴向柱塞泵故障诊断方法。在轴向柱塞泵实验平台上设置5种典型故障(配流盘磨损、斜盘磨损、滑... 针对传统多尺度卷积神经网络对不同尺度的特征只是简单拼接而未考虑特征差异的问题,提出一种基于多尺度通道注意力卷积神经网络(MSCA-CNN)的轴向柱塞泵故障诊断方法。在轴向柱塞泵实验平台上设置5种典型故障(配流盘磨损、斜盘磨损、滑靴磨损、松靴故障、中心弹簧失效),采集6种工作状态(正常状态及5种典型故障)下的z轴振动信号。以小波变换为信号预处理模块,将加速度传感器采集的一维振动信号转化为时频图并作为诊断模型的输入信号,采用不同尺度的卷积核对时频图进行特征提取。通过通道注意力为每个通道赋予不同的权重值,使模型能够集中学习与通道密切相关的特征信息,从而提高轴向柱塞泵的故障分类能力和诊断的效率。搭建轴向柱塞泵故障诊断实验平台,验证所提方法的有效性。结果表明:该模型对6种工作状态的诊断准确率达到99.65%,相比传统多尺度卷积神经网络模型提高了3.16%,验证了MSCA-CNN模型在轴向柱塞泵故障诊断中的优越性。 展开更多
关键词 故障诊断 卷积神经网络 通道注意力 多尺度特征 柱塞泵
在线阅读 下载PDF
基于通道注意力机制与多尺度减法轻量化网络的滚动轴承故障诊断
2
作者 章力 邓艾东 +2 位作者 王敏 卞文彬 张宇剑 《动力工程学报》 北大核心 2025年第4期571-581,共11页
针对传统多尺度卷积神经网络模型存在的特征定位不精确、训练时间长、抗噪性能差等问题,提出了一种基于通道注意力机制与多尺度减法轻量化网络的滚动轴承故障诊断模型。首先,将滚动轴承的一维振动信号转换为二维灰度图作为输入,丰富特... 针对传统多尺度卷积神经网络模型存在的特征定位不精确、训练时间长、抗噪性能差等问题,提出了一种基于通道注意力机制与多尺度减法轻量化网络的滚动轴承故障诊断模型。首先,将滚动轴承的一维振动信号转换为二维灰度图作为输入,丰富特征信息;同时,构建多尺度减法神经网络模型,关注层级差异;其次,引入轻量化模块,减少内存访问;然后,结合通道注意力机制,调整特征权重;最后,将故障样本输入到网络模型中,实现精确分类。利用风电机组传动系统模拟实验台采集的样本数据进行诊断任务。结果表明:该故障诊断模型能够有效克服传统多尺度卷积神经网络模型网络层数多、参数量大所带来的弊端,能够充分关注各层级之间的差异信息,减少冗余信息的提取,精确定位故障特征,缩短模型训练时间,在恒定工况、变工况和强噪声工况下都具有较高的诊断精度. 展开更多
关键词 滚动轴承 故障诊断 多尺度减法神经网络 轻量化模块 通道注意力机制 变工况
在线阅读 下载PDF
基于窗口自注意力网络与YOLOv5融合的输电线路通道异物检测 被引量:3
3
作者 薛昂 姜恩宇 +2 位作者 张文涛 林顺富 米阳 《上海交通大学学报》 北大核心 2025年第3期413-423,共11页
针对输电线路通道异物检测背景复杂以及小目标情况下检测效果不佳等问题,提出一种基于窗口自注意力网络与YOLOv5模型融合的输电线路通道安全检测算法.首先,选用窗口自注意力(S-T)网络优化主干网络,扩大模型感受视野,增强提取有效信息的... 针对输电线路通道异物检测背景复杂以及小目标情况下检测效果不佳等问题,提出一种基于窗口自注意力网络与YOLOv5模型融合的输电线路通道安全检测算法.首先,选用窗口自注意力(S-T)网络优化主干网络,扩大模型感受视野,增强提取有效信息的能力.其次,改进自适应空间特征融合(ASFF)模块,增强多尺度特征融合能力.最后,考虑到真实框与预测框不匹配的问题,引入结构相似性交并比(SIoU),优化边界误差,提高小目标定位准确性.实验结果表明,本文模型对线路通道多目标入侵检测精度达到90.2%,且提升了小目标检测效果;与主流目标检测算法相比,可以更好地满足输电线路通道中的异物检测需求. 展开更多
关键词 智能化巡检 输电线路通道 目标检测 窗口自注意力网络 自适应空间特征融合
在线阅读 下载PDF
基于通道注意力机制的MIMO神经网络均衡算法
4
作者 户俊杰 延凤平 +2 位作者 郭浩 王鹏飞 骆长亮 《光通信技术》 北大核心 2025年第3期22-26,共5页
针对模分复用光传输系统中的模式串扰问题,提出了一种基于通道注意力机制的多输入多输出(MIMO)神经网络均衡算法(MIMO-NNE-CAM)算法。该算法通过引入通道注意力机制,使神经网络专注于更重要的信道特征,实现信号的有效均衡。为验证算法性... 针对模分复用光传输系统中的模式串扰问题,提出了一种基于通道注意力机制的多输入多输出(MIMO)神经网络均衡算法(MIMO-NNE-CAM)算法。该算法通过引入通道注意力机制,使神经网络专注于更重要的信道特征,实现信号的有效均衡。为验证算法性能,利用VPI Transmission仿真平台搭建了三模模分复用系统进行测试。实验结果表明:在满足误码率为1×10^(-3)的条件下,MIMO-NNE-CAM算法相较原始MIMO-NNE算法和最小均方(LMS)算法分别具有1.3dB和3.1dB的性能增益,且在强耦合情况下也能保持稳定的误码性能,展现出更快的收敛速度和更强的抗耦合能力。 展开更多
关键词 信道均衡 模分复用 神经网络 模间串扰 通道注意力机制
在线阅读 下载PDF
基于高效通道注意力的多阶段图像去雨网络 被引量:1
5
作者 李国金 张书铭 +1 位作者 林森 陶志勇 《电光与控制》 CSCD 北大核心 2024年第4期109-114,120,共7页
针对现有图像去雨算法不能更好地保留图像背景细节的问题,提出一种基于高效通道注意力的多阶段图像去雨网络。首先,网络使用3×3卷积提取雨图的浅层特征并传递给高效通道注意力模块,为不同的特征通道分配不同的权重;然后,传递给3个... 针对现有图像去雨算法不能更好地保留图像背景细节的问题,提出一种基于高效通道注意力的多阶段图像去雨网络。首先,网络使用3×3卷积提取雨图的浅层特征并传递给高效通道注意力模块,为不同的特征通道分配不同的权重;然后,传递给3个并行阶段,在前2个阶段中,使用编码-解码器进行多尺度特征提取,减少雨纹信息丢失,其中使用Transformer模块抑制无用信息传递;最后,在第3个阶段使用初始分辨率模块代替编码-解码器,从而保留输出图像的精细特征。实验结果表明,所提算法在Rain800、Rain12、Rain100L和Rain100H公开测试集上的结构相似性分别为0.830、0.968、0.960和0.944,峰值信噪比分别为27.33 dB、35.27 dB、36.79 dB和28.94 dB。所提算法相比于经典和新颖的图像去雨算法,在去除雨纹和恢复背景细节上具有更好的效果。 展开更多
关键词 深度学习 图像去雨 多阶段网络 Transformer模块 通道注意力机制
在线阅读 下载PDF
融合高效卷积注意力的时域卷积网络短期负荷预测模型
6
作者 孙东磊 李文升 +1 位作者 梁露 张智晟 《山东科技大学学报(自然科学版)》 北大核心 2025年第5期83-90,共8页
为避免时域卷积网络中膨胀卷积结构导致的负荷信息不连续现象,进一步提升预测模型对重要负荷特征的提取能力,本研究提出一种融合高效卷积注意力模块的混合膨胀卷积改进时域卷积网络(ECBAM-HTCN)的短期负荷预测模型。该模型以具备并行计... 为避免时域卷积网络中膨胀卷积结构导致的负荷信息不连续现象,进一步提升预测模型对重要负荷特征的提取能力,本研究提出一种融合高效卷积注意力模块的混合膨胀卷积改进时域卷积网络(ECBAM-HTCN)的短期负荷预测模型。该模型以具备并行计算能力的时域卷积网络为基础学习负荷数据特征,通过构建混合膨胀卷积层改进时域卷积网络残差块,利用不同膨胀系数的卷积自适应地捕获不同距离下全部负荷数据,避免信息不连续;同时,引入能够自适应调整卷积核大小的一维卷积改进传统卷积注意力模块,高效捕获负荷数据空间和通道两个维度的重要信息。基于实际电网负荷数据仿真实验表明,在短期负荷预测任务中,所提出的ECBAM-HTCN模型具有较高的预测精度和较好的稳定性。 展开更多
关键词 短期负荷预测 时域卷积网络 混合膨胀卷积 高效卷积注意力模块
在线阅读 下载PDF
融合注意力的特征聚合孪生网络视觉跟踪
7
作者 金静 牛品 翟凤文 《计算机工程与应用》 北大核心 2025年第12期166-176,共11页
目前以孪生网络为基础的目标跟踪算法,仍然存在网络浅层的特征中有价值的上下文信息无法合理利用的问题。针对这一问题,提出一种融合拆分注意力机制(split-attention,SA)的目标跟踪算法SiamMCFA(siamese multi-channel feature aggregat... 目前以孪生网络为基础的目标跟踪算法,仍然存在网络浅层的特征中有价值的上下文信息无法合理利用的问题。针对这一问题,提出一种融合拆分注意力机制(split-attention,SA)的目标跟踪算法SiamMCFA(siamese multi-channel feature aggregation module)。在骨干网络中引入拆分注意力机制,用来提取浅层特征中有价值的上下文信息,通过像素级互相关模块(pixel-wise cross correlation,PWCC)融合模板区域和搜索区域浅层和深层特征中的上下文信息,以增强模板区域和搜索区域的特征图之间的联系,从而提高跟踪器的鲁棒性。针对因尺度变化而容易导致目标丢失的问题,设计了一个多通道特征聚合模块(multi-channel feature aggregation module,MCFA),用于聚合目标不同区域的特征信息,使跟踪器尽可能地区分目标和语义背景,进一步提升跟踪准确性。最后,在OTB100、VOT2019、GOT10K和LaSOT四个数据集上进行了详尽的实验评估,结果显示,SiamMCFA与当前基于孪生网络的先进的跟踪器SiamCAR相比,其成功率(success rate)与精准度(precision)分别提高了2.26和2.83个百分点。与SiamIRCA相比成功率与精准度提高了0.3和0.9个百分点。 展开更多
关键词 目标跟踪 孪生网络 拆分注意力 像素级互相关 通道特征聚合
在线阅读 下载PDF
基于多尺度注意力轻量化网络的信道状态信息反馈方法
8
作者 刘庆利 谢佳骏 《电讯技术》 北大核心 2025年第9期1363-1372,共10页
针对大规模多输入多输出系统中信道状态信息在反馈时重构精度低、复杂度高的问题,提出了一种基于注意力机制的反馈方法。首先,考虑到信道状态信息矩阵数据分布特点,采用一种高效多尺度注意力模块提取信道状态信息矩阵局部和全局的特征,... 针对大规模多输入多输出系统中信道状态信息在反馈时重构精度低、复杂度高的问题,提出了一种基于注意力机制的反馈方法。首先,考虑到信道状态信息矩阵数据分布特点,采用一种高效多尺度注意力模块提取信道状态信息矩阵局部和全局的特征,并关注重要数据点的分布,提升网络模型的特征学习能力。其次,使用增强的可重参数化的卷积替代普通的卷积核,提升卷积对于局部特征的提取能力,使整个神经网络自编码器在保持轻量化的基础上达到更高的压缩重构精度。仿真结果表明,与轻量化网络CRNet和ACRNet-1x相比,所提出的网络模型在复杂度方面分别平均降低了19%和5%,重构精度分别平均提高了3%和8%,同时展现出了更好的鲁棒性。 展开更多
关键词 大规模MIMO 信道状态信息反馈 神经网络自编码器 高效多尺度注意力 轻量化网络
在线阅读 下载PDF
基于双线性RepVGG注意力网络的花卉分类 被引量:1
9
作者 侯向宁 赵金伟 +1 位作者 黄孝斌 蒋维成 《激光杂志》 CAS 北大核心 2024年第4期165-171,共7页
为进一步提高花卉分类的准确率,在对双线性卷积神经网络、RepVGG及注意力机制进行研究的基础上,提出一种基于双线性RepVGG注意力机制的网络模型。首先利用RepVGG网络替换原始的特征提取网络VGG,以提高对花卉主要特征的提取能力;然后在两... 为进一步提高花卉分类的准确率,在对双线性卷积神经网络、RepVGG及注意力机制进行研究的基础上,提出一种基于双线性RepVGG注意力机制的网络模型。首先利用RepVGG网络替换原始的特征提取网络VGG,以提高对花卉主要特征的提取能力;然后在两个RepVGG网络中分别引入通道注意力及空间注意力机制,并利用两个RepVGG网络外积后生成的高维双线性特征,来提取花卉的细粒度特征;最后通过结构重参数化,将RepVGG的各层转换为单路结构,以提高模型推理的速度。实验结果表明,在增强的Oxford-102数据集上,新模型与原始模型及常见模型相比,其推理速度及分类准确率均有较大的提升,与未引入注意力前相比,分类准确率也有一定的提升。 展开更多
关键词 双线性卷积神经网络 repvgg 注意力机制 细粒度 结构重参数化
在线阅读 下载PDF
基于端口注意力与通道空间注意力的网络异常流量检测 被引量:8
10
作者 肖斌 甘昀 +2 位作者 汪敏 张兴鹏 王照星 《计算机应用》 CSCD 北大核心 2024年第4期1027-1034,共8页
网络异常流量检测是网络安全保护重要组成部分之一。目前,基于深度学习的异常流量检测方法都是将端口号属性与其他流量属性同等对待,忽略了端口号的重要性。为了提高异常流量检测性能,借鉴注意力思想,提出一个卷积神经网络(CNN)结合端... 网络异常流量检测是网络安全保护重要组成部分之一。目前,基于深度学习的异常流量检测方法都是将端口号属性与其他流量属性同等对待,忽略了端口号的重要性。为了提高异常流量检测性能,借鉴注意力思想,提出一个卷积神经网络(CNN)结合端口注意力模块(PAM)和通道空间注意力模块(CBAM)的网络异常流量检测模型。首先,将原始网络流量作为PAM的输入,分离得到端口号属性送入全连接层,得到学习后的端口注意力权重值,并与其他流量属性点乘,输出端口注意力后的流量数据;其次,将流量数据转换成灰度图,利用CNN和CBAM更充分地提取特征图在通道和空间上的信息;最后,使用焦点损失函数解决数据不平衡的问题。所提PAM具有参数量少、即插即用和普遍适用的优点。在CICIDS2017数据集上,所提模型的异常流量检测二分类任务准确率为99.18%,多分类任务准确率为99.07%,对只有少数训练样本的类别也有较高的识别率。 展开更多
关键词 异常流量检测 注意力机制 数据不平衡 轻量级网络 通道空间注意力模块
在线阅读 下载PDF
基于残差注意力编-解码网络的道路提取方法
11
作者 齐然然 帕力旦·吐尔逊 +1 位作者 汤泊川 钱育蓉 《计算机工程与科学》 北大核心 2025年第1期119-129,共11页
针对遥感图像中相似形状地物对道路提取造成干扰的问题,提出基于残差注意力的编-解码网络RAED-Net。RAED-Net的编码网络采用改进的通道注意力残差模块来提取输入图像的局部特征和全局特征,自适应地调整通道特征映射的权重,提高对重要通... 针对遥感图像中相似形状地物对道路提取造成干扰的问题,提出基于残差注意力的编-解码网络RAED-Net。RAED-Net的编码网络采用改进的通道注意力残差模块来提取输入图像的局部特征和全局特征,自适应地调整通道特征映射的权重,提高对重要通道信息的关注,减少背景干扰。在解码网络中引入条形卷积模块,提高上采样过程中跨通道信息交互以及对道路边缘细节信息的恢复能力,提升复杂环境中道路提取结果的准确度。在2个不同类型公开数据集上的对比实验结果表明,RAED-Net能够准确提取道路信息,缓解了相似地物对道路提取带来的干扰问题,取得综合最优结果且参数量最少。尤其在全像素标注、复杂性较高的mini DGRD数据集上的F1、IoU和mIoU分别比次优网络提高了3.53%,5.76%和2.21%。 展开更多
关键词 遥感图像 道路提取 编-解码网络 通道注意力
在线阅读 下载PDF
基于混合注意力生成对抗网络的遥感图像去雾方法
12
作者 马六 毛克彪 郭中华 《智慧农业(中英文)》 2025年第2期172-182,共11页
[目的/意义]近年来,深度学习在遥感图像去雾领域取得了显著进展,尤其是在引入注意力机制以提升特征学习方面。然而,传统的注意力机制大多依赖全局平均池化,导致模型对特定影响点的敏感性过高,难以有效应对遥感图像中的去雾问题。为了提... [目的/意义]近年来,深度学习在遥感图像去雾领域取得了显著进展,尤其是在引入注意力机制以提升特征学习方面。然而,传统的注意力机制大多依赖全局平均池化,导致模型对特定影响点的敏感性过高,难以有效应对遥感图像中的去雾问题。为了提高去雾技术的效果,满足农业、城市规划等领域对图像质量日益增长的需求,现有方法亟需改进。[方法]本研究提出了一种混合注意力生成对抗网络(Hybrid Attention-Based Generative Adversarial Network,HAB-GAN)。该模型通过结合高效通道注意力模块与空间注意力模块,嵌入生成对抗网络架构中,实现了对遥感图像去雾效果的显著提升。高效通道注意力模块通过降低全局特征聚合中的冗余信息,既保留了性能,又减少了模型复杂度;空间注意力模块则从局部到全局对遥感图像中的雾化区域进行识别和聚焦,增强了对这些区域的恢复能力。这种方法能够更加有效地应对遥感图像中复杂多变的景观,尤其适用于农业等需要高质量遥感数据的领域。[结果与讨论]在RESISC(Remote Sensing Image Scene Classification)45数据集上,与现有的其他注意力机制去雾模型,如SpA GAN和HyA-GAN进行比较,HAB-GAN模型去雾效果更优,其中峰值信噪比(Peak Signal-to-Noise Ratio,PSNR)分别增加了2.64和1.14 dB,结构相似度(Structural Similarity Index,SSIM)分别增加了0.0122和0.0019。此外,消融实验验证了混合注意力机制的有效性,去除HAB模块后,HAB-GAN模型的PSNR下降了3.87 dB,SSIM下降了0.0334。[结论]提出的HAB-GAN模型显著提升了遥感图像的去雾效果,使生成的图像更加接近无雾图像,特别是对于复杂的农业、环境监测等场景具有重要应用价值。HAB模块在提升模型性能方面发挥了关键作用,为未来的遥感图像处理和相关领域提供了有力的技术支持。 展开更多
关键词 遥感图像 深度学习 生成对抗网络 高效通道注意力模块 空间注意力模块 去雾
在线阅读 下载PDF
基于门控注意力网络的调制信号分类识别算法
13
作者 许雪 姚文强 +1 位作者 李晨 郭业才 《现代电子技术》 北大核心 2025年第3期69-75,共7页
针对神经网络提取的信号特征不足导致信号识别率下降的问题,提出基于门控注意力网络的调制信号分类识别算法。该算法先对输入信号进行混合数据增强,生成更多维度的样本以便网络更好地提取信号特征;再将处理后的样本信号输入双通道网络(C... 针对神经网络提取的信号特征不足导致信号识别率下降的问题,提出基于门控注意力网络的调制信号分类识别算法。该算法先对输入信号进行混合数据增强,生成更多维度的样本以便网络更好地提取信号特征;再将处理后的样本信号输入双通道网络(CNN and BiLSTM Parallel),并行提取信号的空间特征和时间特征;最后将提取到的特征输入到门控注意力网络中,自适应地调整特征权重,减少网络复杂度。实验表明,文中提出的算法最高分类准确率为92.3%,优于对比的其他网络模型。 展开更多
关键词 自动调制识别 通道网络 长短时记忆网络 门控注意力网络 空间特征 时间特征
在线阅读 下载PDF
基于通道注意力机制增强DGNN的外骨骼机器人步态相位预测 被引量:1
14
作者 颜建军 许赢家 +2 位作者 林越 金理 江金林 《华东理工大学学报(自然科学版)》 北大核心 2025年第1期110-118,共9页
利用一种基于通道注意力机制增强的有向图神经网络(Channel Attention Enhanced Directed Graph Neural Network,CA-DGNN)的外骨骼机器人步态相位预测方法,提高了步态相位预测的准确性和可靠性。首先,研制了人体下肢姿态信息采集装置,... 利用一种基于通道注意力机制增强的有向图神经网络(Channel Attention Enhanced Directed Graph Neural Network,CA-DGNN)的外骨骼机器人步态相位预测方法,提高了步态相位预测的准确性和可靠性。首先,研制了人体下肢姿态信息采集装置,采集人体下肢的行走步态数据并构建人体下肢的骨架模型;之后,建立了基于CA-DGNN步态相位的预测模型,提取人体步态相位的运动特征,并基于当前时刻数据预测未来时刻的步态相位;最后,探讨了滑动窗口大小对算法性能的影响。本文提高了外骨骼机器人步态相位预测的准确性和鲁棒性,为此方向研究提供了一种新的思路和方法。 展开更多
关键词 步态相位预测 惯性传感器 骨架 时空图卷积网络 通道注意力机制
在线阅读 下载PDF
基于混合域残差注意力网络的滚动轴承智能故障诊断方法 被引量:3
15
作者 贾立新 陈永毅 +1 位作者 倪洪杰 张丹 《高技术通讯》 CAS 北大核心 2024年第1期101-110,共10页
机械设备正朝着大型化、精密化和自动化的方向发展,机械系统也因此变得越来越复杂。考虑到机械系统可能会发生无特征的灾难性故障,因此机械故障的自动检测是一个巨大的挑战。然而,现有的故障检测方法在对高度复杂的工业系统进行故障类... 机械设备正朝着大型化、精密化和自动化的方向发展,机械系统也因此变得越来越复杂。考虑到机械系统可能会发生无特征的灾难性故障,因此机械故障的自动检测是一个巨大的挑战。然而,现有的故障检测方法在对高度复杂的工业系统进行故障类型识别时,误诊率较高,无法给出准确的故障诊断结果。针对这一问题,本文以滚动轴承这一机械设备关键部件作为研究对象,提出一种基于混合域残差注意力网络的故障诊断方法,旨在结合深度卷积神经网络自动学习表示的优点,并配合通道注意力机制和空间注意力机制的关键特征提取能力,提高故障检测性能。实验结果表明,所提出的方法能够准确地检测轴承故障类型,在准确度指标方面优于其他方法。 展开更多
关键词 故障诊断 滚动轴承 通道注意力机制 空间注意力机制 卷积神经网络(CNN)
在线阅读 下载PDF
融合高效通道注意力的复杂场景违禁品检测 被引量:1
16
作者 崔丽群 李万欣 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2024年第4期494-505,共12页
针对X射线在违禁品检测任务中安检图像色彩存在对比度低、检测精度低、极易出现漏检错检的问题,在快速区域卷积神经网络(Faster R-CNN)算法基础上,通过K-means聚类算法改进锚框(Anchor)的生成方式;提出将高效通道注意力机制(ECANet)引... 针对X射线在违禁品检测任务中安检图像色彩存在对比度低、检测精度低、极易出现漏检错检的问题,在快速区域卷积神经网络(Faster R-CNN)算法基础上,通过K-means聚类算法改进锚框(Anchor)的生成方式;提出将高效通道注意力机制(ECANet)引入到感兴趣池化层(ROIpooling)后,突出违禁品的轮廓、色彩等信息。本文算法在S_DXray数据集上的m AP达到92.06%,改进后网络模型检测精度提高5.06个百分点。有效提高X射线图像违禁品检测的精度和小尺度目标的检测能力,有效避免错检、漏检的现象。 展开更多
关键词 目标检测 X射线图像 残差网络 特征金字塔 K均值聚类 快速区域卷积神经网络 高效通道注意力机制
在线阅读 下载PDF
基于迁移学习及通道先验注意力机制的地质构造识别
17
作者 刘俊杰 马凯 +4 位作者 黄泽华 田苗 邱芹军 陶留锋 谢忠 《广西师范大学学报(自然科学版)》 北大核心 2025年第2期107-120,共14页
针对平面地质图件中地质构造背景复杂、符号表示多样化而导致识别效果不佳的问题,本文提出一种基于迁移学习和通道先验注意力机制的地质构造识别模型MsAttenEfficientNet。该模型以EfficientNet为主干网络架构,并使用通道先验注意力(cha... 针对平面地质图件中地质构造背景复杂、符号表示多样化而导致识别效果不佳的问题,本文提出一种基于迁移学习和通道先验注意力机制的地质构造识别模型MsAttenEfficientNet。该模型以EfficientNet为主干网络架构,并使用通道先验注意力(channel prior convolution attention,CPCA)模块替换EfficientNet特征提取模块MBConv中的压缩和激励网络(squeeze-and-excitation net,SENet),使模型能够动态地分配通道和空间注意力权重,更准确地捕捉到图像中的重要区域和空间结构;其次对顶层预测模块进行改进,引入Swish激活函数和Dropout层,加强模型的泛化性能;最后使用Adam优化算法提高网络的收敛速度,并利用迁移学习实现特征参数共享。通过在地质构造数据集GeoStr18上进行训练及测试,实验结果表明,MsAttenEfficientNet模型对地质构造的识别精准率为96.92%,召回率为96.89%,F 1分数为96.90%,优于ResNet50、ShuffleNetV2和DenseNet121等主流分类识别模型,可有效用于地质构造识别。 展开更多
关键词 图像识别 地质构造 EfficientNet网络 通道先验注意力 迁移学习
在线阅读 下载PDF
基于融合通道与时间注意力的TCN-BLSTM模型的混装作业车间在制品库存实时预测
18
作者 庄泓 唐秋华 +2 位作者 成丽新 余淑均 齐航 《计算机集成制造系统》 北大核心 2025年第9期3174-3186,共13页
混装作业车间加工和装配两阶段间的在制品库存水平,可能直接导致装配生产中断或引起错装漏装,故需预测不同时刻库存水平,实现精准控制。提出了融合通道与时间注意力机制(CATA)的TCN-BLSTM模型。首先,利用去噪自动编码器进行特征降维,去... 混装作业车间加工和装配两阶段间的在制品库存水平,可能直接导致装配生产中断或引起错装漏装,故需预测不同时刻库存水平,实现精准控制。提出了融合通道与时间注意力机制(CATA)的TCN-BLSTM模型。首先,利用去噪自动编码器进行特征降维,去除数据噪声和冗余信息;通过时间卷积网络(TCN)捕获工件流在加工机器装配工位间的传递机制,并将通道注意力嵌入时间卷积网络中,挖掘关键特征;通过双向长短时记忆网络(BLSTM)模拟推拉时刻双向信息流的传递,设计含多个模块的时间注意力网络,增强所有时刻特征间关联关系,挖掘影响库存的关键时刻;通过反向传播更新注意力网络参数,实现精准预测。实验结果表明所提出的CATA-TCN-BLSTM模型有效挖掘了关键特征和时刻,大幅提高了预测准确率;并实现了不同生产场景下的预测模型迁移,预测准确率达98%以上。 展开更多
关键词 在制品库存预测 时间卷积网络 通道注意力 双向长短期记忆网络 时间注意力
在线阅读 下载PDF
基于极化衰减特征与通道关注混合神经网络的锂离子电池容量在线估计
19
作者 徐志成 杨达 +2 位作者 张闯 陈占群 张献 《电工技术学报》 北大核心 2025年第17期5683-5702,共20页
容量是衡量电池性能的关键指标,当前容量估计存在特征实用性差、模型准确度与泛化性不足的问题。鉴于此,该文提出一种结合极化衰减特征与通道关注混合神经网络的锂离子电池容量在线估计方法。首先,利用恒压电流和弛豫电压衰减的去极化特... 容量是衡量电池性能的关键指标,当前容量估计存在特征实用性差、模型准确度与泛化性不足的问题。鉴于此,该文提出一种结合极化衰减特征与通道关注混合神经网络的锂离子电池容量在线估计方法。首先,利用恒压电流和弛豫电压衰减的去极化特性,提取不受充电起点影响的多维实用特征,同时引入相关系数法和主成分分析法对特征进行预处理以用于容量在线估计;其次,通过融合深度置信网络(DBN)、长短期记忆网络(LSTM)和挤压-激励(SE)机制,构建具有自适应通道关注能力的混合神经网络以提高容量估计精度;最后,利用多种工况、多种材料的电池数据,对所提的方法进行了验证。结果表明,容量估计的平均绝对百分比误差、方均根百分比误差分别在1.2%、1.5%以内,验证了该方法的准确性与有效性。 展开更多
关键词 锂离子电池 容量在线估计 极化衰减特征 混合神经网络 通道注意力
在线阅读 下载PDF
结合通道与空间注意力机制的声音事件检测方法
20
作者 冯宇轩 刘玲文 +1 位作者 付海涛 朱丽 《吉林大学学报(理学版)》 北大核心 2025年第4期1143-1149,共7页
针对样本稀缺条件下声学特征提取不充分的问题,提出一种基于通道和空间压缩的小样本声音事件检测方法.该方法通过构建双压缩注意力机制,在通道维度进行特征筛选,在空间维度实现特征聚焦,有效提升了原型网络在小样本场景下的特征判别能力... 针对样本稀缺条件下声学特征提取不充分的问题,提出一种基于通道和空间压缩的小样本声音事件检测方法.该方法通过构建双压缩注意力机制,在通道维度进行特征筛选,在空间维度实现特征聚焦,有效提升了原型网络在小样本场景下的特征判别能力.实验结果表明,该方法在数据集DCASE(detection and classification of acoustic scenes and events)上的F1达66.84%,相比原型网络方法提升4.11个百分点,为野生动物监测和生态环境评估等实际应用提供了更可靠的技术支持. 展开更多
关键词 声音事件检测 原型网络 通道注意力 空间注意力
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部