期刊文献+
共找到6,454篇文章
< 1 2 250 >
每页显示 20 50 100
多尺度特征提取与融合的红外图像增强算法 被引量:5
1
作者 李牧 张一朗 柯熙政 《红外与激光工程》 北大核心 2025年第2期240-253,共14页
针对传统的特征融合算法多从单一的尺度上抽取图像的特征,并且在红外图像亮度增强过程中可能导致局部特征信息的丢失与退化而引起红外图像细节分辨率不高的问题,提出了多尺度特征提取与融合的红外图像增强算法,主要由多尺度自适应特征... 针对传统的特征融合算法多从单一的尺度上抽取图像的特征,并且在红外图像亮度增强过程中可能导致局部特征信息的丢失与退化而引起红外图像细节分辨率不高的问题,提出了多尺度特征提取与融合的红外图像增强算法,主要由多尺度自适应特征提取模块、亮度增强迭代函数以及特征融合和图像重建模块构成。首先,提出的多尺度自适应特征提取融合模块保存和融合了来自不同卷积层特征的多尺度信息;然后,改进的亮度增强迭代函数使用了融合特征作为逐像素参数,用于红外图像亮度增强;最后,通过提出的特征融合和图像重建模块,增强了特征在网络中的传播能力,并保持了局部信息的完整性。实验结果表明:多尺度特征提取与融合的红外图像增强算法与其它表现较好的网络相比,峰值信噪比、余弦相似度以及信息熵分别提高了3.7%、1.3%、1.6%。且在测试数据集上根据引用的火灾隐患检测算法判断是否存在火灾隐患进行早期火灾检测,其准确率为97.86%,说明了提出的多尺度特征提取与融合的红外图像增强算法的有效性与可行性。 展开更多
关键词 红外图像 图像增强 深度学习 特征融合 注意力机制
在线阅读 下载PDF
基于动态自适应通道注意力特征融合的小目标检测 被引量:1
2
作者 吴迪 赵品懿 +2 位作者 甘升隆 沈学军 万琴 《电子科技大学学报》 北大核心 2025年第2期221-232,共12页
针对小目标检测中卷积操作导致检测特征缺失和不同尺度语义隔阂的问题,提出一种基于动态自适应通道注意力特征融合的小目标检测方法。1)提出一种多尺度三角动态颈(Tri-Neck)网络结构,用于融合多尺度特征语义隔阂及弥补小目标特征缺失的... 针对小目标检测中卷积操作导致检测特征缺失和不同尺度语义隔阂的问题,提出一种基于动态自适应通道注意力特征融合的小目标检测方法。1)提出一种多尺度三角动态颈(Tri-Neck)网络结构,用于融合多尺度特征语义隔阂及弥补小目标特征缺失的问题。2)提出一种分组批量动态自适应通道注意力模块,增强弱语义小目标特征同时抑制无用信息,且在动态自适应通道注意力模块中设计新的激活函数和交并比损失函数,提升通道注意力表征能力。3)采用ResNet50作为骨干网络依次连接特征金字塔网络和Tri-Neck网络。实验结果表明,该方法在Pascal Voc 2007、Pascal Voc 2012上比YOLOv8算法mAP分别提升5.3%和6.2%,在MS COCO 2017数据集上AP和AP_S分别提升1.6%和2%,在SODA-D数据集上比YOLOv8算法AP提升0.9%。 展开更多
关键词 小目标检测 多尺度融合特征 特征金字塔 动态通道注意力 交并比损失函数
在线阅读 下载PDF
基于注意力机制和特征融合的井下轻量级人员检测方法 被引量:1
3
作者 王帅 杨伟 +2 位作者 李宇翔 吴佳奇 杨维 《煤炭科学技术》 北大核心 2025年第4期383-392,共10页
煤矿井下环境复杂,安全隐患较多,人员检测是保障煤矿安全生产和建设智慧矿山的重要内容。常用的检测算法不仅参数量大,对设备算力要求高,而且在煤矿低照度环境下的应用效果不理想。针对上述问题,基于YOLOv5提出一种用于煤矿井下的轻量... 煤矿井下环境复杂,安全隐患较多,人员检测是保障煤矿安全生产和建设智慧矿山的重要内容。常用的检测算法不仅参数量大,对设备算力要求高,而且在煤矿低照度环境下的应用效果不理想。针对上述问题,基于YOLOv5提出一种用于煤矿井下的轻量级人员检测方法YOLOv5-CWG。首先,在骨干网络中嵌入坐标注意力机制(Coordinate Attention)自适应的调整特征图中每个通道的权重,增强特征的表达能力,提高模型在低照度、粉尘影响严重以及对比度低的不利条件下对待检测人员目标的关注度,更精确地定位和识别人员目标。其次,通过加权多尺度特征融合模块(Weighted multiscale feature fusion moule)引入可学习的权重赋予特征层不同的关注度,使网络有效融合浅层位置特征和高层语义信息,增强模型的信息提取能力,更好地区分目标区域和背景噪声,从而提高模型的抗干扰能力。增加1个P2层的检测头,提升较小目标的检测和定位精度。引入SIoU损失函数代替原损失函数加快模型收敛。最后,引入Ghost模块优化骨干网络,可以在不损失模型性能的前提下降低模型的参数量,提高检测速度,使得模型更容易部署在资源受限的设备上。结果表明,提出的YOLOv5-CWG算法在煤矿井下人员检测数据集(UMPDD)上的mAP达到了97.5%,相较于YOLOv5s提高了7.3%,计算量减少了27.6%,FPS提高了6.3。所提算法显著提高了煤矿井下人员检测精度,有效解决了亮度低和光照不均引起的人员检测困难问题。 展开更多
关键词 人员检测 YOLOv5 注意力机制 轻量化 特征融合
在线阅读 下载PDF
我国传统家具文化融合艺术特征探析 被引量:1
4
作者 李军 刘垚青 +1 位作者 郝水菊 覃祺 《林产工业》 北大核心 2025年第6期69-74,共6页
我国传统家具承载着优秀的中华物质与非物质文化遗产,其文化形式由材料、工艺、结构、装饰共同组成,凝结着中华民族的造物智慧及工艺技巧,蕴含着优秀的文化、技艺、装饰艺术基因,其表现特征也反映出了中华民族不同历史时期的艺术及文化... 我国传统家具承载着优秀的中华物质与非物质文化遗产,其文化形式由材料、工艺、结构、装饰共同组成,凝结着中华民族的造物智慧及工艺技巧,蕴含着优秀的文化、技艺、装饰艺术基因,其表现特征也反映出了中华民族不同历史时期的艺术及文化内涵。研究了我国文化交流在传统家具上的体现以及我国传统家具中文化融合的艺术特征,并将其归纳为三个方面的交融:朴素唯物崇拜与宗教艺术、农耕文化与游牧文化、欧洲宫廷家具艺术与我国传统家具文化,以期为我国传统家具的研究提供新视角,为解读传统家具艺术内涵探索新途径。 展开更多
关键词 传统家具 造型 结构 装饰 融合特征
在线阅读 下载PDF
动态场景下火灾烟雾多特征融合识别定位研究 被引量:1
5
作者 陈贵亮 金天宇 杨冬 《传感器与微系统》 北大核心 2025年第6期33-37,共5页
提出了一种动态场景下火灾烟雾多特征融合识别定位算法。为解决动态场景下烟雾准确识别与定位问题,将ORB特征提取结合改进的K—最近邻(KNN)算法,实现了更准确的特征点匹配,通过特征点对灰度阈值划分,实现特征点的分离,达到精确的背景补... 提出了一种动态场景下火灾烟雾多特征融合识别定位算法。为解决动态场景下烟雾准确识别与定位问题,将ORB特征提取结合改进的K—最近邻(KNN)算法,实现了更准确的特征点匹配,通过特征点对灰度阈值划分,实现特征点的分离,达到精确的背景补偿;从烟雾静态特征出发,经过烟雾增强的颜色分割后,引入暗通道帧差法,结合亮度视觉注意机制模型,突出烟雾显著区域,实现了轮廓区域精准分割;最后将烟雾纹理信息与轮廓不规则性两类特征进行融合,对融合后的特征向量进行支持向量机(SVM)训练,实现烟雾区域的最终判定。定位实验表明:所提算法具有能够满足动态场景下的火灾烟雾准确识别与定位。 展开更多
关键词 图像处理 火灾烟雾识别 背景补偿 特征融合 支持向量机
在线阅读 下载PDF
结合注意力特征融合的路面裂缝检测 被引量:2
6
作者 谢永华 厉涛 柏勇 《计算机工程与设计》 北大核心 2025年第1期307-313,共7页
为解决路面裂缝检测中裂缝漏检和定位不准的问题,提出一个结合注意力特征融合的可端到端训练的路面裂缝检测网络。基于Resnet-50结构设计,在特征融合部分添加注意力特征融合模块,通过注意力掩码学习,动态调整浅层特征与深层特征融合权重... 为解决路面裂缝检测中裂缝漏检和定位不准的问题,提出一个结合注意力特征融合的可端到端训练的路面裂缝检测网络。基于Resnet-50结构设计,在特征融合部分添加注意力特征融合模块,通过注意力掩码学习,动态调整浅层特征与深层特征融合权重,突出有用信息,解决裂缝漏检问题;在编码器部分,改进浅层特征与深层特征的选取方式,提升特征融合效果和检测精度。实验结果表明,该网络在各项指标上均优于其它对比网络,具有较高的检测精度。 展开更多
关键词 裂缝检测 深度学习 语义分割 卷积网络 注意力机制 特征融合 特征提取
在线阅读 下载PDF
融合多尺度特征与注意力的小样本目标检测 被引量:1
7
作者 张英俊 甘望阳 +1 位作者 谢斌红 张睿 《小型微型计算机系统》 北大核心 2025年第3期689-696,共8页
针对现有小样本目标检测模型存在的尺度变化问题,支持集与查询集之间的外观变化、遮挡导致的误检与漏检问题,本文提出一种融合多尺度特征与注意力的小样本目标检测模型.首先,采用ResNet-101网络进行特征提取,同时引入ASPP(Atrous Spatia... 针对现有小样本目标检测模型存在的尺度变化问题,支持集与查询集之间的外观变化、遮挡导致的误检与漏检问题,本文提出一种融合多尺度特征与注意力的小样本目标检测模型.首先,采用ResNet-101网络进行特征提取,同时引入ASPP(Atrous Spatial Pyramid Pooling)模块获取不同的感受野,以捕获目标细节信息的多尺度特征.其次,采用Bi-FPN网络进行多尺度特征融合,获得更具代表性的查询特征与支持特征,有效缓解尺度变化问题.然后,利用提出的注意力引导特征增强模块对查询特征与支持特征进行自身关注,使得它们具有更好的判别能力,由此促进查询特征与支持特征的融合,以更好地应对外观变化和遮挡带来的挑战,从而缓解误检、漏检问题.最后,将分类头与边界框回归头进行解耦,分别对RPN网络基于细粒度查询特征产生的候选区域进行目标分类与目标定位.在PASCAL VOC与MS COCO数据集上的实验结果表明,所提模型的检测性能优于主流的小样本目标检测模型,相较于基线模型DCNet,mAP平均分别提升了3.5%与2.1%. 展开更多
关键词 小样本学习 元学习 目标检测 多尺度特征融合 注意力机制
在线阅读 下载PDF
基于高光谱特征融合的榛子霉变检测方法研究 被引量:2
8
作者 张冬妍 毛思雨 +3 位作者 杨子健 陈诺 吴晨旭 马苗源 《食品与发酵工业》 北大核心 2025年第2期311-319,共9页
为实现对榛子霉变的快速无损检测,研究将光谱特征与纹理特征融合并结合机器学习算法建立榛子霉变检测模型。采集400~1000 nm的榛子样本高光谱图像,对样本的原始光谱使用标准正态变量变换法进行预处理,采用蜣螂优化算法、粒子群优化算法... 为实现对榛子霉变的快速无损检测,研究将光谱特征与纹理特征融合并结合机器学习算法建立榛子霉变检测模型。采集400~1000 nm的榛子样本高光谱图像,对样本的原始光谱使用标准正态变量变换法进行预处理,采用蜣螂优化算法、粒子群优化算法和连续投影算法3种特征波长选择方法对光谱进行特征选择;利用主成分分析法对高光谱图像进行降维,根据图像的贡献大小选择样本的最优主成分图像,结合灰度共生矩阵法提取样本4个角度上的5个纹理特征参数。分别基于样本光谱特征、纹理特征、光谱特征与纹理特征融合三类数据结合K最近邻算法构建榛子霉变检测模型。实验结果表明,基于蜣螂优化算法选择的特征光谱与纹理特征融合并结合K最近邻算法建立的模型效果最好,训练集和测试集准确率分别为99.20%和98.34%,实现了榛子霉变的快速无损检测。 展开更多
关键词 高光谱成像 榛子 霉变 无损检测 特征融合 蜣螂优化算法
在线阅读 下载PDF
多尺度和多层级特征融合的人体姿态估计 被引量:2
9
作者 王燕妮 胡敏 +2 位作者 韩世鹏 陈艺瑄 吕昊 《计算机工程与应用》 北大核心 2025年第6期199-209,共11页
人体姿态估计的精度提升通常依赖于特征融合,但是现有特征融合策略往往忽略了尺度特征和层级特征之间的交互作用。为了充分利用不同特征之间的互补性,提出了一种新特征融合策略用以提升人体姿态估计精度,即多尺度和多层级特征融合网络(m... 人体姿态估计的精度提升通常依赖于特征融合,但是现有特征融合策略往往忽略了尺度特征和层级特征之间的交互作用。为了充分利用不同特征之间的互补性,提出了一种新特征融合策略用以提升人体姿态估计精度,即多尺度和多层级特征融合网络(multi-scale and multi-level network,MSLNet)。采用高分辨率网络(high-resolution network,HRNet)作为主干,通过跨尺度信息交互,实现不同分辨率特征图之间的信息交换,获取同时包含细粒度和粗粒度的姿态特征;引入期望最大化注意力-加权双向特征金字塔网络(expectation maximization attention-bidirectional feature pyramid network,EMA-BiFPN),实现多尺度特征融合后的多层级特征聚合,从局部到全局捕捉人体姿态的细节和关联信息;设计由残差结构组成的关键点检测头,完成输出特征的最终融合并提升人体关键点检测准确率。实验结果表明,MSLNet在COCO和MPII数据集上分别取得了75.8%和91.1%的准确率,实现了最优精度,充分验证了MSLNet能够融合尺度和层级之间的互补特征,进而提升人体姿态估计精度。 展开更多
关键词 高分辨率网络(HRNet) 人体姿态估计 期望最大化注意力 双向特征金字塔网络 特征融合
在线阅读 下载PDF
基于注意力机制的特征融合推荐模型 被引量:1
10
作者 马汉达 李腾飞 《计算机工程与科学》 北大核心 2025年第5期902-911,共10页
针对目前推荐系统难以获得特征信息,缺乏有效的方法来表示特征信息的权重的问题,提出了一种基于注意力机制与特征融合的推荐模型FFADeepCF_SPS。首先,针对特征表示不够充分的问题,使用因子分解机融合特征,将特征从一维扩展到高维,从而... 针对目前推荐系统难以获得特征信息,缺乏有效的方法来表示特征信息的权重的问题,提出了一种基于注意力机制与特征融合的推荐模型FFADeepCF_SPS。首先,针对特征表示不够充分的问题,使用因子分解机融合特征,将特征从一维扩展到高维,从而获得特征的低阶表示,然后使用深度神经网络学习高阶特征,并通过一个全连接层将2种特征组合起来,以获得所需的特征表示;其次,针对单头注意力机制过度倾斜权重的问题,使用将输入切分成多个单头分别计算其注意力权重的多头注意力机制,再经由线性变换将各结果进行拼接,获得最终的输出;最后,结合上述2点构建了基于注意力机制与特征融合的推荐模型。为了验证模型的有效性,在4个公开数据集上与基线模型GMF、DeepCF_SPS和CNN-BiLSTM进行了对比实验以及消融实验。实验结果表明,在不同规模的数据集上,所提模型与基线模型相比在MSE、RMSE、MAE评价指标上表现出的性能均更优。 展开更多
关键词 注意力机制 特征融合 推荐模型 评分预测
在线阅读 下载PDF
基于无参数聚类和改进支持向量机多特征融合的控制图模式识别 被引量:1
11
作者 潘柏松 邱敏鹏 钱丽娟 《计算机集成制造系统》 北大核心 2025年第3期855-868,共14页
为提升智能制造中产品质量管控的准确性和及时性,提出一种基于无参数聚类和改进支持向量机多特征融合的控制图模式识别方法。采用蒙特卡洛法生成模拟数据集,考虑了质量特征均值微动的情况。将无参数聚类提取的历史数据信息特征,与统计... 为提升智能制造中产品质量管控的准确性和及时性,提出一种基于无参数聚类和改进支持向量机多特征融合的控制图模式识别方法。采用蒙特卡洛法生成模拟数据集,考虑了质量特征均值微动的情况。将无参数聚类提取的历史数据信息特征,与统计特征以及形状特征进行融合,通过交叉实验获取最优特征组合。借助白鲸算法改进支持向量机分类器,实现对控制图异常模式的准确高效识别。通过仿真实验比较了不同分类器在不同数据集复杂程度下的识别准确性和效率,结果显示,所提出的分类模型对数据集复杂程度的影响较小,即使在复杂数据集上也能保持98.63%以上的识别精度,并具备训练速度快、计算复杂度低的优点。 展开更多
关键词 控制图 模式识别 特征融合 无参数聚类
在线阅读 下载PDF
基于多尺度特征融合SSDLite的光伏组件缺陷检测 被引量:1
12
作者 项新建 汤卉 +3 位作者 肖家乐 王世乾 张颖超 王磊 《太阳能学报》 北大核心 2025年第1期669-675,共7页
为了应对光伏组件缺陷检测中人工检测速度缓慢以及使用YOLO等深度学习模型时速度较慢且硬件成本高的问题,提出一种基于SSDLite的多层特征融合轻量化目标检测方法。该方法采用MobileNetV2作为SSDLite模型的骨干网络,并从中提取3个不同层... 为了应对光伏组件缺陷检测中人工检测速度缓慢以及使用YOLO等深度学习模型时速度较慢且硬件成本高的问题,提出一种基于SSDLite的多层特征融合轻量化目标检测方法。该方法采用MobileNetV2作为SSDLite模型的骨干网络,并从中提取3个不同层次的特征层进行特征融合。针对不同缺陷的尺寸特点,对模型中的先验框的大小也进行了重新设计。在MobileNetV2的瓶颈结构中引入CBAM注意力机制,以提高模型的检测精度。相比传统的SSDLite模型,该文模型平均精度从65.8%提高至72.4%,虽然速度略微下降,但已基本满足实际应用的需求。 展开更多
关键词 光伏组件 目标检测 深度学习 SSDLite 多层特征融合 MobileNetV2
在线阅读 下载PDF
基于全局残差注意力和门控特征融合的CNN-Transformer去雾算法 被引量:1
13
作者 李海燕 乔仁超 +1 位作者 李海江 陈泉 《东北大学学报(自然科学版)》 北大核心 2025年第1期26-34,共9页
为解决现有图像去雾算法因缺乏全局上下文信息、处理分布不均匀的雾时效果差且复用细节信息时引入噪声的缺陷,提出了基于全局残差注意力和门控特征融合的CNN-Transformer去雾算法.首先,引入全局残差注意力机制编码模块自适应地提取非均... 为解决现有图像去雾算法因缺乏全局上下文信息、处理分布不均匀的雾时效果差且复用细节信息时引入噪声的缺陷,提出了基于全局残差注意力和门控特征融合的CNN-Transformer去雾算法.首先,引入全局残差注意力机制编码模块自适应地提取非均匀雾区的细节特征,设计跨维度通道空间注意力优化信息权重.然后,提出全局建模Transformer模块加深编码器的特征提取过程,设计带有并行卷积的Swin Transformer捕捉特征之间的依赖关系.最后,设计门控特征融合解码模块复用图像重建所需的纹理信息,滤除不相关的雾噪声,提高去雾性能.在4个公开数据集上进行定性和定量实验,实验结果表明:所提算法能够有效地处理非均匀雾区域,重建纹理细腻且语义丰富的高保真无雾图像,其峰值信噪比和结构相似性指数都优于经典对比算法. 展开更多
关键词 图像去雾 全局残差注意力机制 CNN-Transformer架构 门控特征融合 图像重建
在线阅读 下载PDF
基于光谱波段-纹理特征-植被指数融合的棉蚜虫危害等级无人机监测研究
14
作者 廖娟 王辉 +5 位作者 梁业雄 何欣颖 曾浩求 何松炜 唐赛欧 罗锡文 《农业机械学报》 北大核心 2025年第5期91-102,共12页
棉蚜虫的精准无损检测对棉蚜虫害防治及棉花产量和品质的提升具有重要意义。本研究提出一种基于多特征融合的棉蚜虫危害等级(Cotton aphid damage levels,CADL)监测方法,融合棉花冠层光谱特征波长、植被指数和纹理特征,提高棉花蚜虫危... 棉蚜虫的精准无损检测对棉蚜虫害防治及棉花产量和品质的提升具有重要意义。本研究提出一种基于多特征融合的棉蚜虫危害等级(Cotton aphid damage levels,CADL)监测方法,融合棉花冠层光谱特征波长、植被指数和纹理特征,提高棉花蚜虫危害等级识别精度。采用无人机搭载高光谱成像系统采集棉花冠层高光谱图像,利用Savitzky-Golay平滑(SG平滑)和多元散射校正(MSC)对提取的光谱数据进行预处理,利用支持向量机(SVM)模型将预处理后的光谱数据进行建模,对比发现MSC表现更优。采用竞争性自适应重加权算法(CARS)和随机蛙跳算法(SFLA)对MSC预处理后的光谱数据进行特征波长一次提取,分别提取出31、37个特征波长。进一步使用连续投影算法(SPA)对特征波长进行二次提取,最终确定了6个棉蚜虫危害敏感波长,分别为650、786、931、938、945、961 nm。基于二次提取的6个特征波长,计算了9种植被指数和8种纹理特征,并分别分析了9种植被指数和8种纹理特征与棉蚜虫危害等级(CADL)的相关性。构建了LightGBM、XGBoost、SVM和RF模型,并基于以上模型对比了特征波长、植被指数、纹理特征,特征波长和植被指数2种特征相融合,以及特征波长、植被指数和纹理特征3种特征相融合对棉蚜虫危害等级的判定效果。结果表明,植被指数(RDVI、SAVI、MSAVI、OSAVI)和纹理特征(MEA、VAR、DIS、HOM)与CADL相关性较高。基于特征波长、植被指数和纹理特征3种特征相融合的XGBoost模型对棉蚜虫危害等级判定效果最佳,测试集总体分类精度(OA)达到86.99%,Kappa系数为0.8371,相较于仅使用特征波长、植被指数、纹理特征,特征波长和植被指数2种特征相融合的模型,测试集OA分别提升4.88、27.64、21.95、2.44个百分点。 展开更多
关键词 棉蚜虫危害等级 航空遥感 高光谱 纹理特征 特征融合
在线阅读 下载PDF
三维人体姿态估计中的多尺度时空特征融合
15
作者 张宇 刘骊 +2 位作者 付晓东 刘利军 彭玮 《计算机辅助设计与图形学学报》 北大核心 2025年第1期75-88,共14页
针对视频输入的单人三维人体姿态估计中表征不精确、融合不充分、结果不平滑的问题,提出三维人体姿态估计的多尺度时空特征融合方法.首先在空域定义关节点、肢体和上/下身人体标记并通过位置嵌入表示人体的空间多尺度特征;然后结合自注... 针对视频输入的单人三维人体姿态估计中表征不精确、融合不充分、结果不平滑的问题,提出三维人体姿态估计的多尺度时空特征融合方法.首先在空域定义关节点、肢体和上/下身人体标记并通过位置嵌入表示人体的空间多尺度特征;然后结合自注意力机制和多层感知机构建空间多尺度特征融合模块,融合关节点、肢体和上/下身三个空间多尺度特征,得到初步姿态特征序列;最后建立时序多尺度编码进行时序特征融合获得最终姿态特征序列,并通过时序解码,优化生成细化的三维人体姿态.在Human3.6M数据集上的实验结果表明,所提方法的平均每关节位置P-MPJPE和速度误差MPJVE分别为33.6和2.4,较对比方法降低了2.3%和4.0%,能够降低计算复杂度,提高三维人体姿态估计精度,生成准确、平滑的三维人体姿态估计结果.此外,在HumanEva-I数据集的测试结果表明,所提方法也具有一定的泛化性. 展开更多
关键词 三维人体姿态估计 多尺度特征 自注意力机制 时空特征融合 时序编码
在线阅读 下载PDF
基于词嵌入和特征融合的恶意软件检测研究 被引量:1
16
作者 师智斌 孙文琦 +1 位作者 窦建民 于孟洋 《信息安全研究》 北大核心 2025年第5期412-419,共8页
针对现有传统方法存在特征提取和表示受限、无法同时捕获API序列的空间语义特征和时序特征、无法捕获能决定目标任务的关键特征信息等问题,利用自然语言处理领域的词嵌入技术和多模型特征抽取以及特征融合技术,提出一种基于词嵌入和特... 针对现有传统方法存在特征提取和表示受限、无法同时捕获API序列的空间语义特征和时序特征、无法捕获能决定目标任务的关键特征信息等问题,利用自然语言处理领域的词嵌入技术和多模型特征抽取以及特征融合技术,提出一种基于词嵌入和特征融合的恶意软件检测方法.首先使用自然语言处理领域的词嵌入技术对API序列编码,得到其语义特征编码表示;然后分别利用多重卷积网络和Bi-LSTM网络提取API序列的n-gram局部空间特征和时序特征;最后利用自注意力机制对捕获的特征进行关键位置信息的深度融合,通过刻画深层恶意行为特征实现分类任务.实验结果表明,在二分类任务中,该方法准确率达到94.79%,相较于传统机器学习方法平均提高了12.37%,比深度学习方法平均提高5.78%.在多分类任务中,该方法的准确率也达到91.95%,能够有效地提高对恶意软件的检测准确率. 展开更多
关键词 恶意软件检测 软件调用序列 多重卷积网络 长短期记忆网络 特征融合
在线阅读 下载PDF
跨模态多层特征融合的遥感影像语义分割
17
作者 李智杰 程鑫 +3 位作者 李昌华 高元 薛靖裕 介军 《计算机科学与探索》 北大核心 2025年第4期989-1000,共12页
多模态语义分割网络能够利用不同模态中的互补信息来提高分割精度,在地物分类领域具有广泛的应用潜力。然而,现有的多模态遥感影像语义分割模型大多忽略了深度特征的几何形状信息,未将多层特征充分利用就进行融合,导致跨模态特征提取不... 多模态语义分割网络能够利用不同模态中的互补信息来提高分割精度,在地物分类领域具有广泛的应用潜力。然而,现有的多模态遥感影像语义分割模型大多忽略了深度特征的几何形状信息,未将多层特征充分利用就进行融合,导致跨模态特征提取不充分,融合效果不理想。针对这些问题,提出了一种基于多模态特征提取和多层特征融合的遥感影像语义分割模型。通过构建双分支编码器,模型能够分别提取遥感影像的光谱信息和归一化数字表面模型(nDSM)的高程信息,并深入挖掘nDSM的几何形状信息。引入跨层丰富模块细化完善每层特征,从深层到浅层充分利用多层的特征信息。完善后的特征通过注意力特征融合模块,对特征进行差异性互补和交叉融合,以减轻分支结构之间的差异,充分发挥多模态特征的优势,从而提高遥感影像分割精度。在ISPRS Vaihingen和Potsdam数据集上进行实验,mF1分数分别达到了90.88%和93.41%,平均交互比(mIoU)分别达到了83.49%和87.85%,相较于当前主流算法,该算法实现了更准确的遥感影像语义分割。 展开更多
关键词 遥感影像 归一化数字表面模型(nDSM) 语义分割 特征提取 特征融合
在线阅读 下载PDF
基于深度特征局部重采样融合的多种类水稻种子识别
18
作者 张长胜 李得恺 +3 位作者 杨忠义 王蒙 张付杰 张庭源 《农业机械学报》 北大核心 2025年第7期522-531,共10页
针对多种类水稻种子识别过程中,形态特征较多、分类难度较大的问题,本文提出了一种基于深度特征局部重采样融合(Depth feature local resampling fusion,DFLRF)的分类网络,对36种水稻种子进行分类识别。首先,该方法使用ConvNeXt作为骨... 针对多种类水稻种子识别过程中,形态特征较多、分类难度较大的问题,本文提出了一种基于深度特征局部重采样融合(Depth feature local resampling fusion,DFLRF)的分类网络,对36种水稻种子进行分类识别。首先,该方法使用ConvNeXt作为骨干网络提取水稻种子特征;其次,采用特征强化注意力模块(Feature intensification attention module,FIAM)构造全局特征采集分支,使用多通道卷积局部重采样模块(Multi-channel convolutional local resampling module,MCLRM)和FIAM构建局部特征采集分支;最后,将输出的全局特征和局部特征进行融合,在CosFace损失约束下准确识别出具有近似特征的不同种类水稻种子。本研究使用自采数据集,实验得出,新模型ConvNeXtDFLRF总体准确率达到86.90%,较基础模型提高5.88个百分点,与InceptionResNetV2和EfficientNetV2等主流模型相比,总体识别准确率提升2.92~8.80个百分点,整体识别效果最优。本文所提出模型能够有效地对36种水稻种子进行分类,为多种类水稻种子分类识别的研究提供了一种新颖且有效的方法。 展开更多
关键词 水稻种子分类 多种类 深度特征 局部重采样 特征融合
在线阅读 下载PDF
多模态特征融合的RGB-T目标跟踪网络
19
作者 金静 刘建琴 翟凤文 《光学精密工程》 北大核心 2025年第12期1940-1954,共15页
近年来,RGB-T跟踪方法因可见光与热红外图像的互补特性而在视觉跟踪领域得到广泛应用。然而,现有方法在模态互补信息利用方面仍存在局限,特别是基于Transformer的算法缺乏模态间的直接交互,难以充分挖掘RGB和TIR模态的语义信息。针对这... 近年来,RGB-T跟踪方法因可见光与热红外图像的互补特性而在视觉跟踪领域得到广泛应用。然而,现有方法在模态互补信息利用方面仍存在局限,特别是基于Transformer的算法缺乏模态间的直接交互,难以充分挖掘RGB和TIR模态的语义信息。针对这些问题,提出了一种多模态特征融合的RGB-T目标跟踪网络(Multi-Modal Feature Fusion Tracking Network for RGB-T,MMFFTN)。该网络首先在骨干网络提取初步特征后,引入通道特征融合模块(Channel Feature Fusion Module,CFFM),实现RGB和TIR通道特征的直接交互与融合。其次,针对RGB和TIR模态差异可能导致的融合效果不理想问题,设计了跨模态特征融合模块(Cross-Modal Feature Fusion Module,CMFM),通过自适应融合策略进一步融合RGB和TIR的全局特征,以提升跟踪的准确性。对本文提出的跟踪模型在GTOT,RGBT234和LasHeR三个数据集上进行了详细的实验评估。实验结果表明,与当前先进的基于Transformer的跟踪器ViPT相比,MMFFTN在成功率(Success Rate)和精确率(Precision Rate)上分别提升了3.0%和4.7%;与基于Transformer的跟踪器SDSTrack相比,成功率和精确率分别提升了2.4%和3.3%。 展开更多
关键词 RGB-T目标跟踪 TRANSFORMER 通道特征融合 跨模态特征融合
在线阅读 下载PDF
特征级语义感知引导的多模态图像融合算法
20
作者 张梅 金叶 +1 位作者 朱金辉 贺霖 《电子与信息学报》 北大核心 2025年第8期2909-2918,共10页
在自动驾驶领域,红外和可见光的融合图像因其能够提供显著目标和丰富的纹理细节而备受关注。然而现有的大部分融合算法单方面关注融合图像的视觉质量和评价指标,而忽略了高级视觉任务的需求。另外,虽然一些融合方法尝试结合高级视觉任务... 在自动驾驶领域,红外和可见光的融合图像因其能够提供显著目标和丰富的纹理细节而备受关注。然而现有的大部分融合算法单方面关注融合图像的视觉质量和评价指标,而忽略了高级视觉任务的需求。另外,虽然一些融合方法尝试结合高级视觉任务,但是其效果受限于语义先验和融合任务之间的交互不足且没有考虑到不同特征差异性的影响。因此,该文提出了特征级语义感知引导的多模态图像融合算法,使语义先验知识与融合任务进行充分交互,提高融合结果在后续的分割任务中的性能。对于语义特征和融合图像特征两者的差异性,提出了双特征交互模块,以实现不同特征的充分交互和选择。对于红外和可见光两种不同模态特征的差异性,提出了多源空间注意力融合模块,以实现不同模态信息的有效集成和互补。该文在3个公共数据集上进行了实验,结果表明该方法的融合结果优于其他方法且泛化能力较好,而且在各种融合算法联合分割任务的性能比较实验中也表明了该方法在分割任务中的优越性。 展开更多
关键词 图像融合 联合分割任务 语义感知 特征级引导
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部