针对复杂多变的工作环境给风电机组状态监测带来的挑战,提出了一种基于深度学习和注意力机制组合的状态监测与健康评估方法。首先,将风电机组数据采集与监控(supervisory control and data acquisition,简称SCADA)系统数据进行预处理;其...针对复杂多变的工作环境给风电机组状态监测带来的挑战,提出了一种基于深度学习和注意力机制组合的状态监测与健康评估方法。首先,将风电机组数据采集与监控(supervisory control and data acquisition,简称SCADA)系统数据进行预处理;其次,将卷积神经网络(convolutional neural networks,简称CNN)和长短期记忆网络(long short-term memory,简称LSTM)相结合提取数据的时空特征,并引入注意力机制(Attention)为LSTM分配相应的权重;然后,利用指数加权移动平均来设置阈值,通过分析均方根误差实现风电机组的状态监测;最后,通过实例对风电机组的主轴承、发电机定子和叶片变桨电机状态进行监测分析和健康评估,验证该方法的有效性。展开更多
基金Supported by National Basic Research Program of China (973 Program) (2009CB320601), National Natural Science Foundation of China (60774048, 60821063), the Program for Cheung Kong Scholars, and the Research Fund for the Doctoral Program of China Higher Education (20070145015)
文摘这份报纸学习样品数据的问题为有变化时间的延期的不明确的连续时间的模糊大规模系统的可靠 H 夸张控制。第一,模糊夸张模型( FHM )被用来为某些复杂大规模系统建立模型,然后根据 Lyapunov 指导方法和大规模系统的分散的控制理论,线性 matrixine 质量( LMI )基于条件 arederived toguarantee H 性能不仅当所有控制部件正在操作很好时,而且面对一些可能的致动器失败。而且,致动器的精确失败参数没被要求,并且要求仅仅是失败参数的更低、上面的界限。条件依赖于时间延期的上面的界限,并且不依赖于变化时间的延期的衍生物。因此,获得的结果是不太保守的。最后,二个例子被提供说明设计过程和它的有效性。
基金Supported by National Natural Science Foundation of China (61034005, 60974071), Program for New Century Excellent Talents in University (NCET-08-0101), and Fundamental Research Funds for the Central Universities (N100104102, Nl10604007)
文摘针对复杂多变的工作环境给风电机组状态监测带来的挑战,提出了一种基于深度学习和注意力机制组合的状态监测与健康评估方法。首先,将风电机组数据采集与监控(supervisory control and data acquisition,简称SCADA)系统数据进行预处理;其次,将卷积神经网络(convolutional neural networks,简称CNN)和长短期记忆网络(long short-term memory,简称LSTM)相结合提取数据的时空特征,并引入注意力机制(Attention)为LSTM分配相应的权重;然后,利用指数加权移动平均来设置阈值,通过分析均方根误差实现风电机组的状态监测;最后,通过实例对风电机组的主轴承、发电机定子和叶片变桨电机状态进行监测分析和健康评估,验证该方法的有效性。