Most researches associated with target encircling control are focused on moving along a circular orbit under an ideal environment free from external disturbances.However,elliptical encirclement with a time-varying obs...Most researches associated with target encircling control are focused on moving along a circular orbit under an ideal environment free from external disturbances.However,elliptical encirclement with a time-varying observation radius,may permit a more flexible and high-efficacy enclosing solution,whilst the non-orthogonal property between axial and tangential speed components,non-ignorable environmental perturbations,and strict assignment requirements empower elliptical encircling control to be more challenging,and the relevant investigations are still open.Following this line,an appointed-time elliptical encircling control rule capable of reinforcing circumnavigation performances is developed to enable Unmanned Aerial Vehicles(UAVs)to move along a specified elliptical path within a predetermined reaching time.The remarkable merits of the designed strategy are that the relative distance controlling error can be guaranteed to evolve within specified regions with a designer-specified convergence behavior.Meanwhile,wind perturbations can be online counteracted based on an unknown system dynamics estimator(USDE)with only one regulating parameter and high computational efficiency.Lyapunov tool demonstrates that all involved error variables are ultimately limited,and simulations are implemented to confirm the usability of the suggested control algorithm.展开更多
Based on mesoscopic damage mechanics, numerical code RFPA2D (dynamic edition) was developed to analyze the influence of tunnel reinforcing on failure process of surrounding rock under explosive stress waves. The res...Based on mesoscopic damage mechanics, numerical code RFPA2D (dynamic edition) was developed to analyze the influence of tunnel reinforcing on failure process of surrounding rock under explosive stress waves. The results show that the propagation phenomenon of stress wave in the surrounding rock of tunnel and the failure process of surrounding rock under explosive stress waves are reproduced realistically by using numerical code RFPA2O; from the failure process of surrounding rock, the place at which surrounding rock fractures is transferred because of tunnel reinforcing, and the rockfall and collapse caused by failure of surrounding rock are restrained by tunnel reinforcing; furthermore, the absolute values of peak values of major principal stress, and the minimal principal stress and shear stress at center point of tunnel roof are reduced because of tunnel reinforcing, and the displacement at center point of runnel roof is reduced as well, consequently the stability of tunnel increases.展开更多
In this paper,a type of reinforcing structure for composite shell with single and through hole is presented.The experimental tests for the composite shells without hole,with single hole and reinforced structure,with t...In this paper,a type of reinforcing structure for composite shell with single and through hole is presented.The experimental tests for the composite shells without hole,with single hole and reinforced structure,with through hole and reinforced structure subjected to hydrostatic pressure were carried out by the designed experimental test system.The mechanical responses of the composite shells under hydrostatic pressure are obtained by the high-speed camera and strain measurement.The results show that the entire deformation process of the shell can be divided into three:uniform compression,"buckling mode formation"and buckling.The"buckling mode formation"process is captured and reported for the first time.For the composite shell with single hole,the proposed reinforcing structure has a significant reinforcement effect on the shell and the buckling capacity of the shell is not weaker than the complete composite shell.For the composite shell with through hole,sealing effect can be achieved by the proposed reinforcing structure,but the buckling capacity of the shell after reinforcement can only reach 77%of the original buckling capacity.展开更多
Surface engineering plays a crucial role in improving the performance of high energy materials,and polydopamine(PDA)is widely used in the field of energetic materials for surface modification and functionalization.In ...Surface engineering plays a crucial role in improving the performance of high energy materials,and polydopamine(PDA)is widely used in the field of energetic materials for surface modification and functionalization.In order to obtain high-quality HMX@PDA-based PBX explosives with high sphericity and a narrow particle size distribution,composite microspheres were prepared using co-axial droplet microfluidic technology.The formation mechanism,thermal behavior,mechanical sensitivity,electrostatic spark sensitivity,compressive strength,and combustion performance of the microspheres were investigated.The results show that PDA can effectively enhance the interfacial interaction between the explosive particles and the binder under the synergistic effect of chemical bonds and the physical"mechanical interlocking"structure.Interface reinforcement causes the thermal decomposition temperature of the sample microspheres to move to a higher temperature,with the sensitivity to impact,friction,and electrostatic sparks(for S-1)increasing by 12.5%,31.3%,and 81.5%respectively,and the compressive strength also increased by 30.7%,effectively enhancing the safety performance of the microspheres.Therefore,this study provides an effective and universal strategy for preparing high-quality functional explosives,and also provides some reference for the safe use of energetic materials in practical applications.展开更多
Low Earth orbit(LEO)satellite networks exhibit distinct characteristics,e.g.,limited resources of individual satellite nodes and dynamic network topology,which have brought many challenges for routing algorithms.To sa...Low Earth orbit(LEO)satellite networks exhibit distinct characteristics,e.g.,limited resources of individual satellite nodes and dynamic network topology,which have brought many challenges for routing algorithms.To satisfy quality of service(QoS)requirements of various users,it is critical to research efficient routing strategies to fully utilize satellite resources.This paper proposes a multi-QoS information optimized routing algorithm based on reinforcement learning for LEO satellite networks,which guarantees high level assurance demand services to be prioritized under limited satellite resources while considering the load balancing performance of the satellite networks for low level assurance demand services to ensure the full and effective utilization of satellite resources.An auxiliary path search algorithm is proposed to accelerate the convergence of satellite routing algorithm.Simulation results show that the generated routing strategy can timely process and fully meet the QoS demands of high assurance services while effectively improving the load balancing performance of the link.展开更多
This paper comprehensively explores the impulsive on-orbit inspection game problem utilizing reinforcement learning and game training methods.The purpose of the spacecraft is to inspect the entire surface of a non-coo...This paper comprehensively explores the impulsive on-orbit inspection game problem utilizing reinforcement learning and game training methods.The purpose of the spacecraft is to inspect the entire surface of a non-cooperative target with active maneuverability in front lighting.First,the impulsive orbital game problem is formulated as a turn-based sequential game problem.Second,several typical relative orbit transfers are encapsulated into modules to construct a parameterized action space containing discrete modules and continuous parameters,and multi-pass deep Q-networks(MPDQN)algorithm is used to implement autonomous decision-making.Then,a curriculum learning method is used to gradually increase the difficulty of the training scenario.The backtracking proportional self-play training framework is used to enhance the agent’s ability to defeat inconsistent strategies by building a pool of opponents.The behavior variations of the agents during training indicate that the intelligent game system gradually evolves towards an equilibrium situation.The restraint relations between the agents show that the agents steadily improve the strategy.The influence of various factors on game results is tested.展开更多
Ground reinforcement is crucial for tunnel construction, especially in soft rock tunnels. Existing analytical models are inadequate for predicting the ground reaction curves (GRCs) for reinforced tunnels in strain-sof...Ground reinforcement is crucial for tunnel construction, especially in soft rock tunnels. Existing analytical models are inadequate for predicting the ground reaction curves (GRCs) for reinforced tunnels in strain-softening (SS) rock masses. This study proposes a novel analytical model to determine the GRCs of SS rock masses, incorporating ground reinforcement and intermediate principal stress (IPS). The SS constitutive model captures the progressive post- peak failure, while the elastic-brittle model simulates reinforced rock masses. Nine combined states are innovatively investigated to analyze plastic zone development in natural and reinforced regions. Each region is analyzed separately, and coupled through boundary conditions at interface. Comparison with three types of existing models indicates that these models overestimate reinforcement effects. The deformation prediction errors of single geological material models may exceed 75%. Furthermore, neglecting softening and residual zones in natural regions could lead to errors over 50%. Considering the IPS can effectively utilize the rock strength to reduce tunnel deformation by at least 30%, thereby saving on reinforcement and support costs. The computational results show a satisfactory agreement with the monitoring data from a model test and two tunnel projects. The proposed model may offer valuable insights into the design and construction of reinforced tunnel engineering.展开更多
The development of guidance technology has made it possible for the earth penetration weapons(EPWs)to impact the target repeatedly at a close range. To investigative the damage of single and sequential strike induced ...The development of guidance technology has made it possible for the earth penetration weapons(EPWs)to impact the target repeatedly at a close range. To investigative the damage of single and sequential strike induced by the EPWs, experimental and numerical investigations are carried out in this paper.Firstly, a series of sequential explosion tests are conducted to provide the basic data of the crater size.Then, a numerical model is established to simulate the damage effects of sequential explosions using the meshfree method of Smoothed particle Galerkin. The effectiveness of numerical model is verified by comparison with the experimental results. Finally, based on dimensional analysis, several empirical formulas for describing the crater size are presented, including the conical crater diameter and the conical crater depth of the single explosion, the conical crater area and the joint depth of the secondary explosion. The formula for the single explosion expresses the relationship between the aspect ratio of the charge ranging from 3 to 7, the dimensionless buried depth ranging from 2 to 14 and the crater size. The formula for the secondary explosion expresses the relationship between the relative position of the two explosions and the crater size. All of data can provide reference for the design of protective structures.展开更多
This research addresses the growing demand for high-performance protective materials against high-velocity projectile impacts.The performance of multi-layered steel fiber-reinforced mortar(SFRM)panels with varying thi...This research addresses the growing demand for high-performance protective materials against high-velocity projectile impacts.The performance of multi-layered steel fiber-reinforced mortar(SFRM)panels with varying thicknesses and air gaps,was experimentally investigated under single and repeated impacts of 7.62×51 mm bullets fired from a distance of 50 m.The impact events were recorded using a high-speed camera at 40000 fps.Panel performance was assessed in terms of failure modes,kinetic energy absorption,spalling diameter,and percentage of back-face damage area,and weight loss.Results showed that panel configuration significantly influenced performance.Panel P10,with 70 mm SFRM thickness and 20 mm air gaps,provided the highest resistance,dissipating 5223 J of kinetic energy and preventing back-face damage.In contrast,P7,which absorbed 4476 J,presented a back damage area percentage of 8.93%after three impacts.Weight loss analysis further confirmed durability improvements,with P10 showing only 1.53%cumulative loss compared to 3.26%in P7.The inclusion of wider air gaps enhanced energy dissipation and reduced damage.Comparison between single and repeated impacts demonstrated the sustained resistance of high-performance panels,with P10 maintaining minimal degradation across three consecutive impacts.These findings highlight the potential of multi-layer SFRM panels to enhance ballistic resistance,making them suitable for military,security,and civilian protective applications requiring long-term durability.展开更多
The afterburning of TNT and structural constraints in confined spaces significantly amplify the blast load,leading to severe structural damage. This study investigates the mechanisms underlying the enhanced dynamic re...The afterburning of TNT and structural constraints in confined spaces significantly amplify the blast load,leading to severe structural damage. This study investigates the mechanisms underlying the enhanced dynamic response of reinforced concrete blast doors with four-sided restraints in confined space. Explosion tests with TNT charges ranging from 0.15 kg to 0.4 kg were conducted in a confined space,capturing overpressure loads and the dynamic response of the blast door. An internal explosion model incorporating the afterburning effect was developed using LS-DYNA software and validated against experimental data. The results reveal that the TNT afterburning effect amplifies both the initial peak overpressure and the quasi-static overpressure, resulting in increased deformation of the blast door.Within the 0.15-0.4 kg charge range, the initial overpressure peak and quasi-static overpressure increased by an average of 1.79 times and 2.21 times, respectively. Additionally, the afterburning effect enhanced the blast door's deflection by 177%. Compared to open-space scenarios, the cumulative deflection of the blast door due to repeated shock wave impacts is significantly greater in confined spaces. Furthermore, the quasi-static pressure arising from the structural constraints sustains the blast door's deflection at a high level.展开更多
With the change of the main influencing factors such as structural configuration and impact conditions,reinforced concrete slabs exhibit different mechanical behaviors with different failure patterns,and the failure m...With the change of the main influencing factors such as structural configuration and impact conditions,reinforced concrete slabs exhibit different mechanical behaviors with different failure patterns,and the failure modes are transformed.In order to reveal the failure mode and transformation rule of reinforced concrete slabs under impact loads,a dynamic impact response test was carried out using a drop hammer test device.The dynamic data pertaining to the impact force,support reaction force,structural displacement,and reinforcement strain were obtained through the use of digital image correlation technology(DIC),impact force measurement,and strain measurement.The analysis of the ultimate damage state of the reinforced concrete slab identified four distinct types of impact failure modes:local failure by stamping,overall failure by stamping,local-overall coupling failure,and local failure by punching.Additionally,the influence laws of hammerhead shape,hammer height,and reinforcement ratio on the dynamic response and failure mode transformation of the slab were revealed.The results indicate that:(1)The local damage to the slab by the plane hammer is readily apparent,while the overall damage by the spherical hammer is more pronounced.(2)In comparison to the high reinforcement ratio slabs,the overall bending resistance of the low reinforcement ratio slabs is significantly inferior,and the slab back exhibits further cracks.(3)As the hammer height increases,the slab failure mode undergoes a transformation,shifting from local failure by stamping and overall failure by stamping to local-overall coupling failure and local failure by punching.(4)Three failure mode thresholds have been established,and by comparing the peak impact force with the failure thresholds,the failure mode of the slab can be effectively determined.展开更多
This paper investigates impulsive orbital attack-defense(AD)games under multiple constraints and victory conditions,involving three spacecraft:attacker,target,and defender.In the AD scenario,the attacker aims to breac...This paper investigates impulsive orbital attack-defense(AD)games under multiple constraints and victory conditions,involving three spacecraft:attacker,target,and defender.In the AD scenario,the attacker aims to breach the defender's interception to rendezvous with the target,while the defender seeks to protect the target by blocking or actively pursuing the attacker.Four different maneuvering constraints and five potential game outcomes are incorporated to more accurately model AD game problems and increase complexity,thereby reducing the effectiveness of traditional methods such as differential games and game-tree searches.To address these challenges,this study proposes a multiagent deep reinforcement learning solution with variable reward functions.Two attack strategies,Direct attack(DA)and Bypass attack(BA),are developed for the attacker,each focusing on different mission priorities.Similarly,two defense strategies,Direct interdiction(DI)and Collinear interdiction(CI),are designed for the defender,each optimizing specific defensive actions through tailored reward functions.Each reward function incorporates both process rewards(e.g.,distance and angle)and outcome rewards,derived from physical principles and validated via geometric analysis.Extensive simulations of four strategy confrontations demonstrate average defensive success rates of 75%for DI vs.DA,40%for DI vs.BA,80%for CI vs.DA,and 70%for CI vs.BA.Results indicate that CI outperforms DI for defenders,while BA outperforms DA for attackers.Moreover,defenders achieve their objectives more effectively under identical maneuvering capabilities.Trajectory evolution analyses further illustrate the effectiveness of the proposed variable reward function-driven strategies.These strategies and analyses offer valuable guidance for practical orbital defense scenarios and lay a foundation for future multi-agent game research.展开更多
The electric vertical takeoff and landing(e VTOL)aircraft shows great potential for rapid military personnel deployment on the battlefield.However,its susceptibility to control loss,complex crashes,and extremely limit...The electric vertical takeoff and landing(e VTOL)aircraft shows great potential for rapid military personnel deployment on the battlefield.However,its susceptibility to control loss,complex crashes,and extremely limited bottom energy-absorbing space demands higher comprehensive crashworthiness of its subfloor thin-walled structures.This study investigated the energy absorption capacity of novel concave polygonal carbon fiber reinforced plastics(CFRP)tubes under multi-angle collisions.Quasistatic compression experiments and finite element simulations were conducted to assess the failure mode and energy absorption.The influences of cross-section shapes,loading conditions,and geometry parameters on crashworthiness metrics were further analyzed.The results revealed that,under the similar weight,concave polygonal tubes exhibited superior energy absorption under axial loads compared to regular polygonal and circular tubes,attributed to the increased number of axial splits.However,both regular and concave polygonal tubes,particularly the latter,demonstrated reduced oblique energy absorption compared to traditional square tubes with the increasing ratio of SEA value decreased from 20%-16%.Notably,this reduction in energy absorption can be compensated for by the implementation of inward and outward crusher plugs,and with them,the concave polygonal tubes demonstrated outstanding overall crashworthiness performance under multiple loading conditions.This concave cross-sectional design methods could serve as a guidance for the development of the eVTOL subfloor.展开更多
The rapid development of military technology has prompted different types of equipment to break the limits of operational domains and emerged through complex interactions to form a vast combat system of systems(CSoS),...The rapid development of military technology has prompted different types of equipment to break the limits of operational domains and emerged through complex interactions to form a vast combat system of systems(CSoS),which can be abstracted as a heterogeneous combat network(HCN).It is of great military significance to study the disintegration strategy of combat networks to achieve the breakdown of the enemy’s CSoS.To this end,this paper proposes an integrated framework called HCN disintegration based on double deep Q-learning(HCN-DDQL).Firstly,the enemy’s CSoS is abstracted as an HCN,and an evaluation index based on the capability and attack costs of nodes is proposed.Meanwhile,a mathematical optimization model for HCN disintegration is established.Secondly,the learning environment and double deep Q-network model of HCN-DDQL are established to train the HCN’s disintegration strategy.Then,based on the learned HCN-DDQL model,an algorithm for calculating the HCN’s optimal disintegration strategy under different states is proposed.Finally,a case study is used to demonstrate the reliability and effectiveness of HCNDDQL,and the results demonstrate that HCN-DDQL can disintegrate HCNs more effectively than baseline methods.展开更多
The severe erosion and inadequate mechanical strength are prominent challenges for high-energy gun propellants.To address it,novel PTW@PDA composites was prepared by polydopamine(PDA)-modifying onto potassium titanate...The severe erosion and inadequate mechanical strength are prominent challenges for high-energy gun propellants.To address it,novel PTW@PDA composites was prepared by polydopamine(PDA)-modifying onto potassium titanate whisker(PTW,K_(2)Ti_(6)O_(13)),and after was incorporated into gun propellant as erosion-reducing and mechanical-reinforcing fillers.The interfacial characterizations results indicated that as-prepared PTW@PDA composites exhibits an enhanced surface compatible with propellant matrix,thereby facilitating their dispersion into propellants more effectively than raw PTW materials.Compared to original propellants,PTW@PDA-modified propellants exhibited significant less erosion,with a Ti-Kbased protective coating being detected on the eroded steel.And 0.5 wt%and 1.0 wt%addition of PTW@PDA significantly improved impact,compressive and tensile strength of propellants.Despite the inevitably reduction in relative force,PTW@PDA slightly increase propellant burning rate while exerting little adverse impact on propellant dynamic activity.This strategy can provide a promising alternative to develop high-energy gun propellant with less erosion and more mechanical strength.展开更多
基金National Natural Science Foundation of China(Grant Nos.61803348,62173312,51922009)Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement(Grant No.201905D121001).
文摘Most researches associated with target encircling control are focused on moving along a circular orbit under an ideal environment free from external disturbances.However,elliptical encirclement with a time-varying observation radius,may permit a more flexible and high-efficacy enclosing solution,whilst the non-orthogonal property between axial and tangential speed components,non-ignorable environmental perturbations,and strict assignment requirements empower elliptical encircling control to be more challenging,and the relevant investigations are still open.Following this line,an appointed-time elliptical encircling control rule capable of reinforcing circumnavigation performances is developed to enable Unmanned Aerial Vehicles(UAVs)to move along a specified elliptical path within a predetermined reaching time.The remarkable merits of the designed strategy are that the relative distance controlling error can be guaranteed to evolve within specified regions with a designer-specified convergence behavior.Meanwhile,wind perturbations can be online counteracted based on an unknown system dynamics estimator(USDE)with only one regulating parameter and high computational efficiency.Lyapunov tool demonstrates that all involved error variables are ultimately limited,and simulations are implemented to confirm the usability of the suggested control algorithm.
基金Projects(50874020, 50504005 and 50490274) supported by the National Natural Science Foundation of ChinaPorject(2007CB209407) supported by Major State Basic Research Development Program of ChinaProject(2005038250) supported by Postdoctoral Science Foundation of China
文摘Based on mesoscopic damage mechanics, numerical code RFPA2D (dynamic edition) was developed to analyze the influence of tunnel reinforcing on failure process of surrounding rock under explosive stress waves. The results show that the propagation phenomenon of stress wave in the surrounding rock of tunnel and the failure process of surrounding rock under explosive stress waves are reproduced realistically by using numerical code RFPA2O; from the failure process of surrounding rock, the place at which surrounding rock fractures is transferred because of tunnel reinforcing, and the rockfall and collapse caused by failure of surrounding rock are restrained by tunnel reinforcing; furthermore, the absolute values of peak values of major principal stress, and the minimal principal stress and shear stress at center point of tunnel roof are reduced because of tunnel reinforcing, and the displacement at center point of runnel roof is reduced as well, consequently the stability of tunnel increases.
基金supported by the Ningbo Major Research and Development Plan Project(Grant No.2024Z135)the Natural Science Basic Research Program of Shaanxi Province(Grant No.2024JC-YBMS-322)+1 种基金China Postdoctoral Science Foundation(Grant No.2020M673492)National Natural Science Foundation of China(Grant No.51909219)。
文摘In this paper,a type of reinforcing structure for composite shell with single and through hole is presented.The experimental tests for the composite shells without hole,with single hole and reinforced structure,with through hole and reinforced structure subjected to hydrostatic pressure were carried out by the designed experimental test system.The mechanical responses of the composite shells under hydrostatic pressure are obtained by the high-speed camera and strain measurement.The results show that the entire deformation process of the shell can be divided into three:uniform compression,"buckling mode formation"and buckling.The"buckling mode formation"process is captured and reported for the first time.For the composite shell with single hole,the proposed reinforcing structure has a significant reinforcement effect on the shell and the buckling capacity of the shell is not weaker than the complete composite shell.For the composite shell with through hole,sealing effect can be achieved by the proposed reinforcing structure,but the buckling capacity of the shell after reinforcement can only reach 77%of the original buckling capacity.
基金supported by the National Natural Science Foundation of China(Grant No.22005275).
文摘Surface engineering plays a crucial role in improving the performance of high energy materials,and polydopamine(PDA)is widely used in the field of energetic materials for surface modification and functionalization.In order to obtain high-quality HMX@PDA-based PBX explosives with high sphericity and a narrow particle size distribution,composite microspheres were prepared using co-axial droplet microfluidic technology.The formation mechanism,thermal behavior,mechanical sensitivity,electrostatic spark sensitivity,compressive strength,and combustion performance of the microspheres were investigated.The results show that PDA can effectively enhance the interfacial interaction between the explosive particles and the binder under the synergistic effect of chemical bonds and the physical"mechanical interlocking"structure.Interface reinforcement causes the thermal decomposition temperature of the sample microspheres to move to a higher temperature,with the sensitivity to impact,friction,and electrostatic sparks(for S-1)increasing by 12.5%,31.3%,and 81.5%respectively,and the compressive strength also increased by 30.7%,effectively enhancing the safety performance of the microspheres.Therefore,this study provides an effective and universal strategy for preparing high-quality functional explosives,and also provides some reference for the safe use of energetic materials in practical applications.
基金National Key Research and Development Program(2021YFB2900604)。
文摘Low Earth orbit(LEO)satellite networks exhibit distinct characteristics,e.g.,limited resources of individual satellite nodes and dynamic network topology,which have brought many challenges for routing algorithms.To satisfy quality of service(QoS)requirements of various users,it is critical to research efficient routing strategies to fully utilize satellite resources.This paper proposes a multi-QoS information optimized routing algorithm based on reinforcement learning for LEO satellite networks,which guarantees high level assurance demand services to be prioritized under limited satellite resources while considering the load balancing performance of the satellite networks for low level assurance demand services to ensure the full and effective utilization of satellite resources.An auxiliary path search algorithm is proposed to accelerate the convergence of satellite routing algorithm.Simulation results show that the generated routing strategy can timely process and fully meet the QoS demands of high assurance services while effectively improving the load balancing performance of the link.
文摘This paper comprehensively explores the impulsive on-orbit inspection game problem utilizing reinforcement learning and game training methods.The purpose of the spacecraft is to inspect the entire surface of a non-cooperative target with active maneuverability in front lighting.First,the impulsive orbital game problem is formulated as a turn-based sequential game problem.Second,several typical relative orbit transfers are encapsulated into modules to construct a parameterized action space containing discrete modules and continuous parameters,and multi-pass deep Q-networks(MPDQN)algorithm is used to implement autonomous decision-making.Then,a curriculum learning method is used to gradually increase the difficulty of the training scenario.The backtracking proportional self-play training framework is used to enhance the agent’s ability to defeat inconsistent strategies by building a pool of opponents.The behavior variations of the agents during training indicate that the intelligent game system gradually evolves towards an equilibrium situation.The restraint relations between the agents show that the agents steadily improve the strategy.The influence of various factors on game results is tested.
基金Projects(52208382, 52278387, 51738002) supported by the National Natural Science Foundation of ChinaProject(2022YJS072) supported by the Fundamental Research Funds for the Central Universities,China。
文摘Ground reinforcement is crucial for tunnel construction, especially in soft rock tunnels. Existing analytical models are inadequate for predicting the ground reaction curves (GRCs) for reinforced tunnels in strain-softening (SS) rock masses. This study proposes a novel analytical model to determine the GRCs of SS rock masses, incorporating ground reinforcement and intermediate principal stress (IPS). The SS constitutive model captures the progressive post- peak failure, while the elastic-brittle model simulates reinforced rock masses. Nine combined states are innovatively investigated to analyze plastic zone development in natural and reinforced regions. Each region is analyzed separately, and coupled through boundary conditions at interface. Comparison with three types of existing models indicates that these models overestimate reinforcement effects. The deformation prediction errors of single geological material models may exceed 75%. Furthermore, neglecting softening and residual zones in natural regions could lead to errors over 50%. Considering the IPS can effectively utilize the rock strength to reduce tunnel deformation by at least 30%, thereby saving on reinforcement and support costs. The computational results show a satisfactory agreement with the monitoring data from a model test and two tunnel projects. The proposed model may offer valuable insights into the design and construction of reinforced tunnel engineering.
文摘The development of guidance technology has made it possible for the earth penetration weapons(EPWs)to impact the target repeatedly at a close range. To investigative the damage of single and sequential strike induced by the EPWs, experimental and numerical investigations are carried out in this paper.Firstly, a series of sequential explosion tests are conducted to provide the basic data of the crater size.Then, a numerical model is established to simulate the damage effects of sequential explosions using the meshfree method of Smoothed particle Galerkin. The effectiveness of numerical model is verified by comparison with the experimental results. Finally, based on dimensional analysis, several empirical formulas for describing the crater size are presented, including the conical crater diameter and the conical crater depth of the single explosion, the conical crater area and the joint depth of the secondary explosion. The formula for the single explosion expresses the relationship between the aspect ratio of the charge ranging from 3 to 7, the dimensionless buried depth ranging from 2 to 14 and the crater size. The formula for the secondary explosion expresses the relationship between the relative position of the two explosions and the crater size. All of data can provide reference for the design of protective structures.
基金funded by Thailand Research Fund under Research and Researchers for Industries (contract no. MSD62I0063)
文摘This research addresses the growing demand for high-performance protective materials against high-velocity projectile impacts.The performance of multi-layered steel fiber-reinforced mortar(SFRM)panels with varying thicknesses and air gaps,was experimentally investigated under single and repeated impacts of 7.62×51 mm bullets fired from a distance of 50 m.The impact events were recorded using a high-speed camera at 40000 fps.Panel performance was assessed in terms of failure modes,kinetic energy absorption,spalling diameter,and percentage of back-face damage area,and weight loss.Results showed that panel configuration significantly influenced performance.Panel P10,with 70 mm SFRM thickness and 20 mm air gaps,provided the highest resistance,dissipating 5223 J of kinetic energy and preventing back-face damage.In contrast,P7,which absorbed 4476 J,presented a back damage area percentage of 8.93%after three impacts.Weight loss analysis further confirmed durability improvements,with P10 showing only 1.53%cumulative loss compared to 3.26%in P7.The inclusion of wider air gaps enhanced energy dissipation and reduced damage.Comparison between single and repeated impacts demonstrated the sustained resistance of high-performance panels,with P10 maintaining minimal degradation across three consecutive impacts.These findings highlight the potential of multi-layer SFRM panels to enhance ballistic resistance,making them suitable for military,security,and civilian protective applications requiring long-term durability.
基金financially supported by the National Natural Science Foundation of China (Grant No. 52278504)the Natural Science Foundation of Jiangsu Province (Grant No. BK20220141)。
文摘The afterburning of TNT and structural constraints in confined spaces significantly amplify the blast load,leading to severe structural damage. This study investigates the mechanisms underlying the enhanced dynamic response of reinforced concrete blast doors with four-sided restraints in confined space. Explosion tests with TNT charges ranging from 0.15 kg to 0.4 kg were conducted in a confined space,capturing overpressure loads and the dynamic response of the blast door. An internal explosion model incorporating the afterburning effect was developed using LS-DYNA software and validated against experimental data. The results reveal that the TNT afterburning effect amplifies both the initial peak overpressure and the quasi-static overpressure, resulting in increased deformation of the blast door.Within the 0.15-0.4 kg charge range, the initial overpressure peak and quasi-static overpressure increased by an average of 1.79 times and 2.21 times, respectively. Additionally, the afterburning effect enhanced the blast door's deflection by 177%. Compared to open-space scenarios, the cumulative deflection of the blast door due to repeated shock wave impacts is significantly greater in confined spaces. Furthermore, the quasi-static pressure arising from the structural constraints sustains the blast door's deflection at a high level.
基金Supported by the National Natural Science Foundation of China(Grant No.52078283)Shandong Provincial Natural Science Foundation(Project No.ZR2024MA094)。
文摘With the change of the main influencing factors such as structural configuration and impact conditions,reinforced concrete slabs exhibit different mechanical behaviors with different failure patterns,and the failure modes are transformed.In order to reveal the failure mode and transformation rule of reinforced concrete slabs under impact loads,a dynamic impact response test was carried out using a drop hammer test device.The dynamic data pertaining to the impact force,support reaction force,structural displacement,and reinforcement strain were obtained through the use of digital image correlation technology(DIC),impact force measurement,and strain measurement.The analysis of the ultimate damage state of the reinforced concrete slab identified four distinct types of impact failure modes:local failure by stamping,overall failure by stamping,local-overall coupling failure,and local failure by punching.Additionally,the influence laws of hammerhead shape,hammer height,and reinforcement ratio on the dynamic response and failure mode transformation of the slab were revealed.The results indicate that:(1)The local damage to the slab by the plane hammer is readily apparent,while the overall damage by the spherical hammer is more pronounced.(2)In comparison to the high reinforcement ratio slabs,the overall bending resistance of the low reinforcement ratio slabs is significantly inferior,and the slab back exhibits further cracks.(3)As the hammer height increases,the slab failure mode undergoes a transformation,shifting from local failure by stamping and overall failure by stamping to local-overall coupling failure and local failure by punching.(4)Three failure mode thresholds have been established,and by comparing the peak impact force with the failure thresholds,the failure mode of the slab can be effectively determined.
基金supported by National Key R&D Program of China:Gravitational Wave Detection Project(Grant Nos.2021YFC22026,2021YFC2202601,2021YFC2202603)National Natural Science Foundation of China(Grant Nos.12172288 and 12472046)。
文摘This paper investigates impulsive orbital attack-defense(AD)games under multiple constraints and victory conditions,involving three spacecraft:attacker,target,and defender.In the AD scenario,the attacker aims to breach the defender's interception to rendezvous with the target,while the defender seeks to protect the target by blocking or actively pursuing the attacker.Four different maneuvering constraints and five potential game outcomes are incorporated to more accurately model AD game problems and increase complexity,thereby reducing the effectiveness of traditional methods such as differential games and game-tree searches.To address these challenges,this study proposes a multiagent deep reinforcement learning solution with variable reward functions.Two attack strategies,Direct attack(DA)and Bypass attack(BA),are developed for the attacker,each focusing on different mission priorities.Similarly,two defense strategies,Direct interdiction(DI)and Collinear interdiction(CI),are designed for the defender,each optimizing specific defensive actions through tailored reward functions.Each reward function incorporates both process rewards(e.g.,distance and angle)and outcome rewards,derived from physical principles and validated via geometric analysis.Extensive simulations of four strategy confrontations demonstrate average defensive success rates of 75%for DI vs.DA,40%for DI vs.BA,80%for CI vs.DA,and 70%for CI vs.BA.Results indicate that CI outperforms DI for defenders,while BA outperforms DA for attackers.Moreover,defenders achieve their objectives more effectively under identical maneuvering capabilities.Trajectory evolution analyses further illustrate the effectiveness of the proposed variable reward function-driven strategies.These strategies and analyses offer valuable guidance for practical orbital defense scenarios and lay a foundation for future multi-agent game research.
基金financially supported by the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(Grant No.24qnpy041)the Science and Technology Innovation Key R&D Program of Chongqing(Grant No.CSTB2023TIAD-STX0030)。
文摘The electric vertical takeoff and landing(e VTOL)aircraft shows great potential for rapid military personnel deployment on the battlefield.However,its susceptibility to control loss,complex crashes,and extremely limited bottom energy-absorbing space demands higher comprehensive crashworthiness of its subfloor thin-walled structures.This study investigated the energy absorption capacity of novel concave polygonal carbon fiber reinforced plastics(CFRP)tubes under multi-angle collisions.Quasistatic compression experiments and finite element simulations were conducted to assess the failure mode and energy absorption.The influences of cross-section shapes,loading conditions,and geometry parameters on crashworthiness metrics were further analyzed.The results revealed that,under the similar weight,concave polygonal tubes exhibited superior energy absorption under axial loads compared to regular polygonal and circular tubes,attributed to the increased number of axial splits.However,both regular and concave polygonal tubes,particularly the latter,demonstrated reduced oblique energy absorption compared to traditional square tubes with the increasing ratio of SEA value decreased from 20%-16%.Notably,this reduction in energy absorption can be compensated for by the implementation of inward and outward crusher plugs,and with them,the concave polygonal tubes demonstrated outstanding overall crashworthiness performance under multiple loading conditions.This concave cross-sectional design methods could serve as a guidance for the development of the eVTOL subfloor.
基金supported by the National Natural Science Foundation of China(7200120972231011+2 种基金72071206)the Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province(2020RC4046)the Science Foundation for Outstanding Youth Scholars of Hunan Province(2022JJ20047).
文摘The rapid development of military technology has prompted different types of equipment to break the limits of operational domains and emerged through complex interactions to form a vast combat system of systems(CSoS),which can be abstracted as a heterogeneous combat network(HCN).It is of great military significance to study the disintegration strategy of combat networks to achieve the breakdown of the enemy’s CSoS.To this end,this paper proposes an integrated framework called HCN disintegration based on double deep Q-learning(HCN-DDQL).Firstly,the enemy’s CSoS is abstracted as an HCN,and an evaluation index based on the capability and attack costs of nodes is proposed.Meanwhile,a mathematical optimization model for HCN disintegration is established.Secondly,the learning environment and double deep Q-network model of HCN-DDQL are established to train the HCN’s disintegration strategy.Then,based on the learned HCN-DDQL model,an algorithm for calculating the HCN’s optimal disintegration strategy under different states is proposed.Finally,a case study is used to demonstrate the reliability and effectiveness of HCNDDQL,and the results demonstrate that HCN-DDQL can disintegrate HCNs more effectively than baseline methods.
基金the support of the instrument and equipment fund of the Key Laboratory of Special Energy,Ministry of Education,Nanjing University of Science and Technology,China.
文摘The severe erosion and inadequate mechanical strength are prominent challenges for high-energy gun propellants.To address it,novel PTW@PDA composites was prepared by polydopamine(PDA)-modifying onto potassium titanate whisker(PTW,K_(2)Ti_(6)O_(13)),and after was incorporated into gun propellant as erosion-reducing and mechanical-reinforcing fillers.The interfacial characterizations results indicated that as-prepared PTW@PDA composites exhibits an enhanced surface compatible with propellant matrix,thereby facilitating their dispersion into propellants more effectively than raw PTW materials.Compared to original propellants,PTW@PDA-modified propellants exhibited significant less erosion,with a Ti-Kbased protective coating being detected on the eroded steel.And 0.5 wt%and 1.0 wt%addition of PTW@PDA significantly improved impact,compressive and tensile strength of propellants.Despite the inevitably reduction in relative force,PTW@PDA slightly increase propellant burning rate while exerting little adverse impact on propellant dynamic activity.This strategy can provide a promising alternative to develop high-energy gun propellant with less erosion and more mechanical strength.