期刊文献+
共找到240篇文章
< 1 2 12 >
每页显示 20 50 100
Advances in the Development of Gradient Scaffolds Made of Nano‑Micromaterials for Musculoskeletal Tissue Regeneration
1
作者 Lei Fang Xiaoqi Lin +5 位作者 Ruian Xu Lu Liu Yu Zhang Feng Tian Jiao Jiao Li Jiajia Xue 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期455-500,共46页
The intricate hierarchical structure of musculoskeletal tissues,including bone and interface tissues,necessitates the use of complex scaffold designs and material structures to serve as tissue-engineered substitutes.T... The intricate hierarchical structure of musculoskeletal tissues,including bone and interface tissues,necessitates the use of complex scaffold designs and material structures to serve as tissue-engineered substitutes.This has led to growing interest in the development of gradient bone scaffolds with hierarchical structures mimicking the extracellular matrix of native tissues to achieve improved therapeutic outcomes.Building on the anatomical characteristics of bone and interfacial tissues,this review provides a summary of current strategies used to design and fabricate biomimetic gradient scaffolds for repairing musculoskeletal tissues,specifically focusing on methods used to construct compositional and structural gradients within the scaffolds.The latest applications of gradient scaffolds for the regeneration of bone,osteochondral,and tendon-to-bone interfaces are presented.Furthermore,the current progress of testing gradient scaffolds in physiologically relevant animal models of skeletal repair is discussed,as well as the challenges and prospects of moving these scaffolds into clinical application for treating musculoskeletal injuries. 展开更多
关键词 Gradient scaffolds Musculoskeletal tissues Advanced manufacturing BIOMATERIALS Tissue regeneration
在线阅读 下载PDF
Recent Strategies and Advances in Hydrogel‑Based Delivery Platforms for Bone Regeneration
2
作者 Xiao Wang Jia Zeng +4 位作者 Donglin Gan Kun Ling Mingfang He Jianshu Li Yongping Lu 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期389-439,共51页
Bioactive molecules have shown great promise for effectively regulating various bone formation processes,rendering them attractive therapeutics for bone regeneration.However,the widespread application of bioactive mol... Bioactive molecules have shown great promise for effectively regulating various bone formation processes,rendering them attractive therapeutics for bone regeneration.However,the widespread application of bioactive molecules is limited by their low accumulation and short half-lives in vivo.Hydrogels have emerged as ideal carriers to address these challenges,offering the potential to prolong retention times at lesion sites,extend half-lives in vivo and mitigate side effects,avoid burst release,and promote adsorption under physiological conditions.This review systematically summarizes the recent advances in the development of bioactive molecule-loaded hydrogels for bone regeneration,encompassing applications in cranial defect repair,femoral defect repair,periodontal bone regeneration,and bone regeneration with underlying diseases.Additionally,this review discusses the current strategies aimed at improving the release profiles of bioactive molecules through stimuli-responsive delivery,carrier-assisted delivery,and sequential delivery.Finally,this review elucidates the existing challenges and future directions of hydrogel encapsulated bioactive molecules in the field of bone regeneration. 展开更多
关键词 HYDROGEL Bone regeneration Bioactive molecules Drug delivery Nano-/microscale carriers
在线阅读 下载PDF
3D Printing of Tough Hydrogel Scaffolds with Functional Surface Structures for Tissue Regeneration
3
作者 Ke Yao Gaoying Hong +11 位作者 Ximin Yuan Weicheng Kong Pengcheng Xia Yuanrong Li Yuewei Chen Nian Liu Jing He Jue Shi Zihe Hu Yanyan Zhou Zhijian Xie Yong He 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期18-45,共28页
Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and hi... Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries. 展开更多
关键词 3D printing Tough hydrogel scaffold Functional surface structure Tissue regeneration BIOMATERIALS
在线阅读 下载PDF
Nanozyme‑Engineered Hydrogels for Anti‑Inflammation and Skin Regeneration 被引量:3
4
作者 Amal George Kurian Rajendra K.Singh +2 位作者 Varsha Sagar Jung‑Hwan Lee Hae‑Won Kim 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期127-179,共53页
Inflammatory skin disorders can cause chronic scarring and functional impairments,posing a significant burden on patients and the healthcare system.Conventional therapies,such as corticosteroids and nonsteroidal anti-... Inflammatory skin disorders can cause chronic scarring and functional impairments,posing a significant burden on patients and the healthcare system.Conventional therapies,such as corticosteroids and nonsteroidal anti-inflammatory drugs,are limited in efficacy and associated with adverse effects.Recently,nanozyme(NZ)-based hydrogels have shown great promise in addressing these challenges.NZ-based hydrogels possess unique therapeutic abilities by combining the therapeutic benefits of redox nanomaterials with enzymatic activity and the water-retaining capacity of hydrogels.The multifaceted therapeutic effects of these hydrogels include scavenging reactive oxygen species and other inflammatory mediators modulating immune responses toward a pro-regenerative environment and enhancing regenerative potential by triggering cell migration and differentiation.This review highlights the current state of the art in NZ-engineered hydrogels(NZ@hydrogels)for anti-inflammatory and skin regeneration applications.It also discusses the underlying chemo-mechano-biological mechanisms behind their effectiveness.Additionally,the challenges and future directions in this ground,particularly their clinical translation,are addressed.The insights provided in this review can aid in the design and engineering of novel NZ-based hydrogels,offering new possibilities for targeted and personalized skin-care therapies. 展开更多
关键词 Nanozymes HYDROGELS ROS scavenging ANTI-INFLAMMATION Skin regeneration
在线阅读 下载PDF
Regeneration of the heart:f rom molecular mechanisms to clinical therapeutics 被引量:2
5
作者 Qian-Yun Guo Jia-Qi Yang +1 位作者 Xun-Xun Feng Yu-Jie Zhou 《Military Medical Research》 SCIE CAS CSCD 2024年第1期80-97,共18页
Heart injury such as myocardial infarction leads to cardiomyocyte loss,fibrotic tissue deposition,and scar formation.These changes reduce cardiac contractility,resulting in heart failure,which causes a huge public hea... Heart injury such as myocardial infarction leads to cardiomyocyte loss,fibrotic tissue deposition,and scar formation.These changes reduce cardiac contractility,resulting in heart failure,which causes a huge public health burden.Military personnel,compared with civilians,is exposed to more stress,a risk factor for heart diseases,making cardiovascular health management and treatment innovation an important topic for military medicine.So far,medical intervention can slow down cardiovascular disease progression,but not yet induce heart regeneration.In the past decades,studies have focused on mechanisms underlying the regenerative capability of the heart and applicable approaches to reverse heart injury.Insights have emerged from studies in animal models and early clinical trials.Clinical interventions show the potential to reduce scar formation and enhance cardiomyocyte proliferation that counteracts the pathogenesis of heart disease.In this review,we discuss the signaling events controlling the regeneration of heart tissue and summarize current therapeutic approaches to promote heart regeneration after injury. 展开更多
关键词 Heart regeneration Cardiac disease THERAPEUTICS Signaling mechanisms
在线阅读 下载PDF
Highly Aligned Ternary Nanofiber Matrices Loaded with MXene Expedite Regeneration of Volumetric Muscle Loss 被引量:1
6
作者 Moon Sung Kang Yeuni Yu +5 位作者 Rowoon Park Hye Jin Heo Seok Hyun Lee Suck Won Hong Yun Hak Kim Dong‑Wook Han 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期269-292,共24页
Current therapeutic approaches for volumetric muscle loss(VML)face challenges due to limited graft availability and insufficient bioactivities.To overcome these limitations,tissue-engineered scaffolds have emerged as ... Current therapeutic approaches for volumetric muscle loss(VML)face challenges due to limited graft availability and insufficient bioactivities.To overcome these limitations,tissue-engineered scaffolds have emerged as a promising alternative.In this study,we developed aligned ternary nanofibrous matrices comprised of poly(lactide-co-ε-caprolactone)integrated with collagen and Ti_(3)C_(2)T_(x)MXene nanoparticles(NPs)(PCM matrices),and explored their myogenic potential for skeletal muscle tissue regeneration.The PCM matrices demonstrated favorable physicochemical properties,including structural uniformity,alignment,microporosity,and hydrophilicity.In vitro assays revealed that the PCM matrices promoted cellular behaviors and myogenic differentiation of C2C12 myoblasts.Moreover,in vivo experiments demonstrated enhanced muscle remodeling and recovery in mice treated with PCM matrices following VML injury.Mechanistic insights from next-generation sequencing revealed that MXene NPs facilitated protein and ion availability within PCM matrices,leading to elevated intracellular Ca^(2+)levels in myoblasts through the activation of inducible nitric oxide synthase(i NOS)and serum/glucocorticoid regulated kinase 1(SGK1),ultimately promoting myogenic differentiation via the m TOR-AKT pathway.Additionally,upregulated i NOS and increased NO–contributed to myoblast proliferation and fiber fusion,thereby facilitating overall myoblast maturation.These findings underscore the potential of MXene NPs loaded within highly aligned matrices as therapeutic agents to promote skeletal muscle tissue recovery. 展开更多
关键词 Ti_(3)C_(2)T_(x)MXene nanoparticle Ternary nanofibrous matrices Myogenesis regeneration of volumetric muscle loss Next generation sequencing
在线阅读 下载PDF
Impact of cattle density on the structure and natural regeneration of a turkey oak stand on an agrosilvopastoral farm in central Italy
7
作者 Alessandra Pacini Francesco Pelleri +4 位作者 Francesco Marini Alberto Maltoni Barbara Mariotti Gianluigi Mazza Maria Chiara Manetti 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第1期168-182,共15页
On an agrosilvopastoral farm in central Italy where Maremmana cattle graze in Turkey oak forests,we evaluated the impact of different livestock densities on stand structure,tree diversity and natural regeneration in f... On an agrosilvopastoral farm in central Italy where Maremmana cattle graze in Turkey oak forests,we evaluated the impact of different livestock densities on stand structure,tree diversity and natural regeneration in four types of grazed areas based on the grazing regime adopted:calf-grazed,high-intensity-grazed,low-intensity-grazed,ungrazed control.For each area,we set up three permanent circular plots(radius of 15 m)to survey the structural and dasometric characteristics of the overstorey,understorey,and regeneration layer.The results showed that grazing negatively affected the complexity of the forest structure and its potential to regenerate and maintain a high level of biodiversity.The differences in stand structure observed between the grazing areas were closely related to livestock density.The most sensitive components of the system were the understorey and the regeneration layers.Contrarily,the current grazing management did not affect the dominant tree structure or its composition.Our findings identified medium-term monitoring and regeneration management as the two significant aspects to consider when assessing sustainable livestock.New forests can be established by excluding graz-ing for about 20–25 years. 展开更多
关键词 AGROFORESTRY Stand structure regeneration Tree biodiversity Grazing intensity
在线阅读 下载PDF
In-situ regeneration of Bi^(0) active site to renew surface activation for long-term stable and efficient CO_(2)-to-formate electrosynthesis
8
作者 Haichuan He Congcheng Yang +6 位作者 Liu Deng Li Luo Yahui Jiang Liqiang Wang Yi Zhang Minghui Yang You-Nian Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期703-711,共9页
CO_(2)-to-formate electrosynthesis with high selectivity and stability has been a long-sought objective.Unfortunately,most catalysts undergo structural and valence state changes due to surface oxidation during operati... CO_(2)-to-formate electrosynthesis with high selectivity and stability has been a long-sought objective.Unfortunately,most catalysts undergo structural and valence state changes due to surface oxidation during operation or storage,resulting in decreased catalytic performance.Herein,we report a efficient and stable BiIn@Cu-foam electrode through the in-situ regeneration of Bi^(0) active sites to renew the surface activation.The electronic structure of Bi site can be regulated by introducing In,thereby enhancing the adsorption strength of*OCHO.The optimized electrode exhibits over 90%FE_(formate)at a wide potential window(-0.9–-2.2 V),and formation rate for 3.15 mM cm^(-1)h^(-1).Especially,the electrode can maintain the high performance at continuously electrolysis for more than 300 h,or for more than 50 cycles,even repeated operation and storage for more than 2 years.This work provides a promising candidate and new insight to construct industrially viable stable Bi-based catalyst for formate electrosynthesis. 展开更多
关键词 In-situ regeneration Stability FORMATE BISMUTH eCO_(2)RR
在线阅读 下载PDF
Direct Regeneration of Spent Lithium-Ion Battery Cathodes:From Theoretical Study to Production Practice
9
作者 Meiting Huang Mei Wang +9 位作者 Liming Yang Zhihao Wang Haoxuan Yu Kechun Chen Fei Han Liang Chen Chenxi Xu Lihua Wang Penghui Shao Xubiao Luo 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期304-336,共33页
Direct regeneration method has been widely concerned by researchers in the field of battery recycling because of its advantages of in situ regeneration,short process and less pollutant emission.In this review,we first... Direct regeneration method has been widely concerned by researchers in the field of battery recycling because of its advantages of in situ regeneration,short process and less pollutant emission.In this review,we firstly analyze the primary causes for the failure of three representative battery cathodes(lithium iron phosphate,layered lithium transition metal oxide and lithium cobalt oxide),targeting at illustrating their underlying regeneration mecha-nism and applicability.Efficient stripping of material from the collector to obtain pure cathode material has become a first challenge in recycling,for which we report several pretreatment methods currently available for subsequent regeneration processes.We review and discuss emphatically the research progress of five direct regeneration methods,including solid-state sintering,hydrothermal,eutectic molten salt,electrochemical and chemical lithiation methods.Finally,the application of direct regeneration technology in production practice is introduced,the problems exposed at the early stage of the industrialization of direct regeneration technol-ogy are revealed,and the prospect of future large-scale commercial production is proposed.It is hoped that this review will give readers a comprehensive and basic understanding of direct regeneration methods for used lithium-ion batteries and promote the industrial application of direct regeneration technology. 展开更多
关键词 Spent LIBs Failure reasons Cathode recycling Direct regeneration Production practice
在线阅读 下载PDF
Regeneration of copper catalysts mediated by molybdenum-based oxides
10
作者 Changyu Ding Xiaoli Pan +7 位作者 Isla E.Gow Xia Wu Hongchen Cao Zhounan Yu Xiaoyan Liu Xiaofeng Yang Qinggang Liu Yanqiang Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期618-625,I0013,共9页
Cu catalysts,known for their unparalleled catalytic capabilities due to their unique electronic structure,have faced inherent challenges in maintaining long-term effectiveness under harsh hydrogenation conditions.Here... Cu catalysts,known for their unparalleled catalytic capabilities due to their unique electronic structure,have faced inherent challenges in maintaining long-term effectiveness under harsh hydrogenation conditions.Here,we demonstrate a molybdenum-mediated redispersion behavior of Cu under hightemperature oxidation conditions.The oxidized Cu nanoparticles with rich metal-support interfaces tend to dissolve into the MoO_(3)support upon heating to 600℃,which facilitates the subsequent regeneration in a reducing atmosphere.A similar redispersion phenomenon is observed for Cu nanoparticles supported on Zn O-modified MoO_(3).The modification of ZnO significantly improves the performance of the Cu catalyst for CO_(2)hydrogenation to methanol,with the high activity being well maintained after four repeated oxidation-reduction cycles.In situ spectroscopic and theoretical analyses suggest that the interaction involved in the formation of the copper molybdate-like compound is the driving force for the redispersion of Cu.This method is applicable to various Mo-based oxide supports,offering a practical strategy for the regeneration of sintered Cu particles in hydrogenation applications. 展开更多
关键词 Cu-based catalysts AGGREGATION regeneration OXIDATION CO_(2)hydrogenation
在线阅读 下载PDF
Selective lithium recovery and regeneration of ternary cathode from spent lithium-ion batteries:Mixed HCl-H_(2)SO_(4) leaching-spray pyrolysis approach
11
作者 Ziyu Chen Yongchao Zhou +1 位作者 Yan Li Tao Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期284-293,共10页
The recycling of spent lithium-ion batteries(LIBs) is crucial for environmental protection and resource sustainability.However,the economic recovery of spent LIBs remains challenging due to low Li recovery efficiency ... The recycling of spent lithium-ion batteries(LIBs) is crucial for environmental protection and resource sustainability.However,the economic recovery of spent LIBs remains challenging due to low Li recovery efficiency and the need for multiple separation operations.Here,we propose a process involving mixed HCl-H_(2)SO_(4) leaching-spray pyrolysis for recycling spent ternary LIBs,achieving both selective Li recovery and the preparation of a ternary oxide precursor.Specifically,the process transforms spent ternary cathode(LiNi_(x)Co_yMn_(2)O_(2),NCM) powder into Li_(2)SO_(4) solution and ternary oxide,which can be directly used for synthesizing battery-grade Li_(2)CO_(3) and NCM cathode,respectively.Notably,SO_(4)^(2-) selectively precipitates with Li^(+) to form thermostable Li_(2)SO_(4) during the spray pyrolysis,which substantially improves the Li recovery efficiency by inhibiting Li evaporation and intercalation.Besides,SO_(2) emissions are avoided by controlling the molar ratio of Li^(+)/SO_(4)^(2-)(≥2:1),The mechanism of the preferential formation of Li_(2)SO_(4) is interpreted from its reverse solubility variation with temperature.During the recycling of spent NCM811,92% of Li is selectively recovered,and the regenerated NCM811 exhibits excellent cycling stability with a capacity retention of 81.7% after 300 cycles at 1 C.This work offers a simple and robust process for the recycling of spent NCM cathodes. 展开更多
关键词 Spent lithium-ion batteries Selective lithium recovery Spray pyrolysis Cathode regeneration Acid-leaching
在线阅读 下载PDF
Regulatory T cells in skin regeneration and wound healing
12
作者 Samuel Knoedler Leonard Knoedler +7 位作者 Martin Kauke-Navarro Yuval Rinkevich Gabriel Hundeshagen Leila Harhaus Ulrich Kneser Bohdan Pomahac Dennis P.Orgill Adriana C.Panayi 《Military Medical Research》 SCIE CAS CSCD 2024年第5期663-685,共23页
As the body’s integumentary system,the skin is vulnerable to injuries.The subsequent wound healing processes aim to restore dermal and epidermal integrity and functionality.To this end,multiple tissue-resident cells ... As the body’s integumentary system,the skin is vulnerable to injuries.The subsequent wound healing processes aim to restore dermal and epidermal integrity and functionality.To this end,multiple tissue-resident cells and recruited immune cells cooperate to efficiently repair the injured tissue.Such temporally-and spatially-coordinated interplay necessitates tight regulation to prevent collateral damage such as overshooting immune responses and excessive inflammation.In this context,regulatory T cells(Tregs)hold a key role in balancing immune homeostasis and mediating cutaneous wound healing.A comprehensive understanding of Tregs’multifaceted field of activity may help decipher wound pathologies and,ultimately,establish new treatment modalities.Herein,we review the role of Tregs in orchestrating the regeneration of skin adnexa and catalyzing healthy wound repair.Further,we discuss how Tregs operate during fibrosis,keloidosis,and scarring. 展开更多
关键词 Regulatory T cells(Tregs) Wound healing Wound repair Skin injury Skin regeneration
在线阅读 下载PDF
How topography and neighbor shape the fate of trees in subtropical forest restoration:Environmental filtering and resource competition drive natural regeneration
13
作者 Haonan Zhang Xingshuo Zhang +7 位作者 Yingying Lv Yanyan Ni Baokun Xu Xiangnan Han Xiao Cao Qingpei Yang Wanggu Xu Zhedong Qian 《Forest Ecosystems》 SCIE CSCD 2024年第1期73-86,共14页
The structure of plant communities at local scales depends on both the spatial heterogeneity of abiotic environmental factors and the biotic interactions within the community.However,although environmental filtering d... The structure of plant communities at local scales depends on both the spatial heterogeneity of abiotic environmental factors and the biotic interactions within the community.However,although environmental filtering due to microtopographic heterogeneity and resource competition among plants caused by spatial variation in tree density and size are considered to be very important in explaining the mechanisms of community assembly,their effects on the processes of individual mortality and recruitment in natural forest regeneration,as well as their relative contributions,are still poorly understood.To address this,we established a 12-ha permanent plot in a subtropical evergreen broad-leaved forest area and measured microtopographic variables such as elevation,slope,aspect,and terrain position index(TPI)using a total station.We monitored the individual mortality and recruitment in forest natural regeneration through repeated surveys at 5-year intervals.We fitted spatial covariance models to jointly use multiple factors from three groups of variables(microtopographic effect,neighborhood density effects,neighborhood size effects)as explanatory variables to analyze their roles in driving the mortality and recruitment of all individual and 12 dominant species in forest natural regeneration at the neighborhood scale.Our results show that:(1)In the crucial early stages of secondary forest restoration,natural regeneration is influenced by a synergy of environmental filtering,due to microtopographic heterogeneity,and resource competition among plants.(2)For distinct species responses,evergreen dominant species'mortality is largely explained by neighborhood effects,while deciduous species are more affected by topographic factors.Furthermore,the adverse effects of larger conspecific trees on younger trees indicate a pattern of competitive pressure leading to mortality among regenerating trees,such pattern emphasis the influence of parent trees on natural regeneration.(3)As trees grow,their interaction with these stressors evolves,suggesting a shift in their resource acquisition strategies and response to neighborhood effects and environmental factors.Despite these changes,the relative importance of topographic factors in determining survival and recruitment success remains constant.This research highlights the importance of considering both environmental and neighborhood effects in forest management,particularly in early secondary forest restoration. 展开更多
关键词 Natural regeneration MICROTOPOGRAPHY Neighborhood effects Mortality and recruitment
在线阅读 下载PDF
Correction:Direct Regeneration of Spent Lithium‑Ion Battery Cathodes:From Theoretical Study to Production Practice
14
作者 Meiting Huang Mei Wang +9 位作者 Liming Yang Zhihao Wang Haoxuan Yu Kechun Chen Fei Han Liang Chen Chenxi Xu Lihua Wang Penghui Shao Xubiao Luo 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期70-70,共1页
The Highlights session of the article unfortunately was taken falsely from another manuscript.The correct Highlights session is now in place.The correct is:Analyze the primary causes of cathode failure in three repres... The Highlights session of the article unfortunately was taken falsely from another manuscript.The correct Highlights session is now in place.The correct is:Analyze the primary causes of cathode failure in three representative batteries,illustrating their underlying regeneration mechanism. 展开更多
关键词 BATTERY mechanism regeneration
在线阅读 下载PDF
Spent graphite regeneration:Exploring diverse repairing manners with impurities-catalyzing effect towards high performance and low energy consumption
15
作者 Yu Dong Zihao Zeng +7 位作者 Zhengqiao Yuan Bing Wang Hai Lei Wenqing Zhao Wuyun Ai Lingchao Kong Yue Yang Peng Ge 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期656-669,共14页
Spent battery recycling has received considerable attention because of its economic and environmental potential.A large amount of retired graphite has been produced as the main electrode material,accompanied by a deta... Spent battery recycling has received considerable attention because of its economic and environmental potential.A large amount of retired graphite has been produced as the main electrode material,accompanied by a detailed exploration of the repair mechanism.However,they still suffer from unclear repair mechanisms and physicochemical evolution.In this study,spent graphite was repaired employing three methodologies:pickling-sintering,pyrogenic-recovery,and high-temperature sintering.Owing to the catalytic effect of the metal-based impurities and temperature control,the as-obtained samples displayed an ordered transformation,including the interlayer distance,crystalline degree,and grain size.As anodes of lithium ions batteries,the capacity of repaired samples reached up to 310 mA h g^(-1)above after 300loops at 1.0 C,similar to that of commercial graphite.Meanwhile,benefitting from the effective assembly of carbon atoms in internal structure of graphite at>1400℃,their initial coulombic efficiency were>87%.Even at 2.0 C,the capacity of samples remained approximately 244 mA h g^(-1)after 500 cycles.Detailed electrochemical and kinetic analyses revealed that a low temperature enhanced the isotropy,thereby enhancing the rate properties.Further,economic and environmental analyses revealed that the revenue obtained through suitable pyrogenic-recovering manners was approximately the largest value(5500$t^(-1)).Thus,this study is expected to clarify the in-depth effect of different repair methods on the traits of graphite,while offering all-round evaluations of repaired graphite. 展开更多
关键词 Spent graphite regeneration REPAIR Temperature treatment
在线阅读 下载PDF
Drivers of tree regeneration in coniferous monocultures during conversion to mixed forests in Central Europe – Implications for forest restoration management
16
作者 Alexander Seliger Christian Ammer +1 位作者 Dominik Seidel Stefan Zerbe 《Forest Ecosystems》 CSCD 2024年第6期910-920,共11页
In Central Europe,anthropogenic coniferous monocultures have been subject to conversion to more diverse mixed forests since the 1990s,however,they are still abundant across many forest landscapes.Artificial and natura... In Central Europe,anthropogenic coniferous monocultures have been subject to conversion to more diverse mixed forests since the 1990s,however,they are still abundant across many forest landscapes.Artificial and natural tree regeneration both play a key role during conversion by determining the species composition and structure of the future forests.Many abiotic and biotic factors can potentially influence the regeneration process and its specific combinations or interactions may be different among tree species and its developmental stages.Here,we aimed to identify and quantify the effect of the most important drivers on the density of the most abundant regenerating tree species(i.e.,Norway spruce and European beech),as well as on species and structural diversity of the tree regeneration.We studied tree regeneration in four former monospecific coniferous stand types(i.e.,Norway spruce,Scots pine,European larch,and Douglas fir)in Southwest Germany that have been under conversion to mixed forests since the 1990s.We sampled tree regeneration in four growth height classes together with a variety of potentially influencing factors on 108 sampling plots and applied multivariate analyses.We identified light availability in the understorey,stand structural attributes,browsing pressure,and diaspore source abundance as the most important factors for the density and diversity of tree regeneration.Particularly,we revealed speciesspecific differences in drivers of regeneration density.While spruce profited from increasing light availability and decreasing stand basal area,beech benefited either from a minor reduction or more strikingly from an increase in overstorey density.Increasing diaspore source abundance positively and a high browsing pressure negatively affected both species equally.Our results suggest that humus and topsoil properties were modified during conversion,probably due to changes in tree species composition and silvicultural activities.The species and structural diversity of the tree regeneration benefitted from increasing light availability,decreasing stand basal area,and a low to moderate browsing pressure.We conclude that forest managers may carefully equilibrate among the regulation of overstorey cover,stand basal area,and browsing pressure to fulfil the objectives of forest conversion,i.e.,establishing and safeguarding a diverse tree regeneration to promote the development of mature mixed forests in the future. 展开更多
关键词 Forest restoration Norway spruce(Picea abies(L.)Karst) European beech(Fagus sylvatica L.) Tree establishment and growth Tree regeneration density Tree species and structural diversity Boruta analysis Generalized additive models(GAMs)
在线阅读 下载PDF
Establishment of High Frequency Regeneration System of Populus tomentosa 被引量:7
17
作者 杜宁霞 李云 +2 位作者 于海武 林善枝 张志毅 《Forestry Studies in China》 CAS 2002年第2期48-51,共4页
The establishment of high frequency regeneration system is a foundation for Agrobacterium mediated genetic transformation. In this work, several important factors influencing the efficiency of regeneration of pla... The establishment of high frequency regeneration system is a foundation for Agrobacterium mediated genetic transformation. In this work, several important factors influencing the efficiency of regeneration of plants, such as concentration of plant growth regulators, leaf explant orientation, leaf growth sequence and leaf segment, were studied. The results indicated that the differentiation rate of adventitious shoots was 90% on basal MS medium only supplemented with 1 5?mg·L -1 BA (6 benzyladenine) and reached the highest level(95%) when 1 0?mg·L -1 BA and 0 3?mg·L -1 NAA (naphthaleneacetic acid) were added to MS medium. 90% of differentiation rate of adventitious roots were obtained when 0 3?mg·L -1 NAA was only added to MS medium. It was also found that more adventitious shoots were regenerated from the lower segment of leaf (with petiole) than the other segments, the number of adventitious shoots decreased from top to base of leaf growth sequence and the percentage of adventitious shoot induction with adaxial side downward was higher than that with adaxial side upward. 展开更多
关键词 triploid Populus tomentosa leaf explant regeneration
在线阅读 下载PDF
Callus induction from leaves of different paulownia species and its plantlet regeneration 被引量:6
18
作者 范国强 翟晓巧 +1 位作者 翟翠娟 毕会涛 《Journal of Forestry Research》 SCIE CAS CSCD 2001年第4期209-214,276,共7页
The experiment was carried out on five different species of Paulownia for callus induction from leaves. MS medium was adopted as basic medium, and from different combinations of NAA and BA the suitable media were dete... The experiment was carried out on five different species of Paulownia for callus induction from leaves. MS medium was adopted as basic medium, and from different combinations of NAA and BA the suitable media were determined for callus induction, bud differentiation, and root differentiation of five different species. MS+0.5NAA+4BA, MS+0.3NAA+2BA, MS+0.5NAA+4BA, MS+0.3NAA+6BA, and MS+0.3NAA+8BA were suitable media of callus inductions of leaves, respectively, for Paulownia tomentosa, Paulownia australis, Paulownia fortunei, Paulownia elongata and P. tmentosa x P. fortunei, and MS+0.3NAA+12BA, MS+0.3NAA+12BA, MS+0.5NAA+12BA, MS+0.5NAA+12BA, and MS+0.7NAA+12BA were suitable media for bud differentiation from leaf callus respectively for above five species. The rooting media was determined as 2MS+0.1NAA, 1/2MS+0.1NAA, 1/2MS, 1/2MS+0.3NAA, and 1/2MS+0.5NAA. These results provide reference data for breeding new fine va-rieties with different kinds of Paulownia protoplasts fusions. 展开更多
关键词 PAULOWNIA Callus induction Plantlet regeneration MEDIUM HORMONE
在线阅读 下载PDF
Natural regeneration characteristics of Pinus sylvestris var. mongolica forests on sandy land in Honghuaerji, China 被引量:21
19
作者 ZHU Jiao-jun KANG Hong-zhang +2 位作者 TAN Hui XU Mei-ling WANG Jun 《Journal of Forestry Research》 SCIE CAS CSCD 2005年第4期253-259,共7页
Natural regeneration in Mongolian pine, Pinus sylvesttis var. mongolica, forest at Honghuaerji of China (the original of the natural Mongolian pine, forest on sandy land) was studied in 2004. The total mean values o... Natural regeneration in Mongolian pine, Pinus sylvesttis var. mongolica, forest at Honghuaerji of China (the original of the natural Mongolian pine, forest on sandy land) was studied in 2004. The total mean values of regeneration indexes were higher in mature stands (more than 80% individual stems were older than 50 years), the maximum of regeneration index reached 29 seedlings, m^ 2, with lowest values in the younger stand, e.g., in 32-year old and 43-year old stands. The stand age was an important factor determining the natural regeneration, which was the best in the older stands in this investigation (e.g. about 80-year old). The regeneration index seemed not to be closely in relation to canopy openness although Mongolian pine is a photophilic tree species. In each type of gaps, natural regeneration was very well. Regeneration indexes were satisfactory at the south and east edges in the circle gaps; and at the east edge of the narrow-square gaps. Results indicated that Mongolian pine, seedlings could endure shading understory, but it would not enter the canopy layer without gap or large disturbance, e.g., fire, wind/snow damage or clear cutting etc. These results may provide potentially references to the management and afforestation of Mongolian pine, plantations on sandy land in arid and semi-arid areas. Researches such as the comprehensive comparisons on regeneration, structure and ecological conditions and so on between natural Mongolian pine, forests and plantations should be conducted in the future. 展开更多
关键词 Pinus sylvestris var. mongolica Mongolian pine Sandy land Natural regeneration Canopy openness Forest gap regeneration index
在线阅读 下载PDF
Effects of stand features and soil enzyme activity on spontaneous pedunculate oak regeneration in Scots pine dominated stands – implication for forest management 被引量:1
20
作者 Dobrowolska Dorota Kurek Przemysław +1 位作者 Olszowska Grażyna Leszek Bolibok 《Forest Ecosystems》 SCIE CSCD 2021年第3期566-582,共17页
Background:A challenge in current forestry is adaptation of managed forests to climate change,which is likely to alter the main processes of forest dynamics,i.e.natural regeneration.Scots pine will probably lose some ... Background:A challenge in current forestry is adaptation of managed forests to climate change,which is likely to alter the main processes of forest dynamics,i.e.natural regeneration.Scots pine will probably lose some parts of its distribution area in Europe.However,two native oaks,pedunculate and sessile may maintain or expand the area of their occurrence in central Europe.The utilization of spontaneous(not initialized by foresters)oak regeneration in Scots pine stands for the creation of next generation stands is one of the adaptation methods to climate change.Many factors influencing pedunculate oak regeneration are well known,but there is a lack of knowledge on the relation between soil enzyme activity and the establishment and development of the species.The aim of the study was to identify the relationships among stand characteristics,herb species composition,soil enzyme activity and the establishment or recruitment of oak regeneration in Scots pine-dominated stands.Results:The one of the most influential factors shaping the oak seedling count was dehydrogenase activity in the humus horizon.We found that plots without litter and fern cover had higher seedling density.The raspberry ground cover and birch crown projection area had a positive influence on oak seedling number.The factor indicating good conditions for high density of oak saplings was phosphatase activity in the organic horizon.The same enzyme activity but in humus horizon described conditions in which more numerous recruits were observed.Conclusions:The activity of soil enzymes can be used as the predictor of the establishment and advancement of oak regeneration but also could be seen as a new dimension of oak regeneration.The general density of spontaneous oak regeneration was not sufficient for the creation of new generation forest stands dominated by oak,but it is possible to use them as admixtures in new generation stands. 展开更多
关键词 Forest stand conversion Spontaneous regeneration regeneration niche DEHYDROGENASE PHOSPHATASE
在线阅读 下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部