Lower Earth Orbit(LEO) satellite becomes an important part of complementing terrestrial communication due to its lower orbital altitude and smaller propagation delay than Geostationary satellite. However, the LEO sate...Lower Earth Orbit(LEO) satellite becomes an important part of complementing terrestrial communication due to its lower orbital altitude and smaller propagation delay than Geostationary satellite. However, the LEO satellite communication system cannot meet the requirements of users when the satellite-terrestrial link is blocked by obstacles. To solve this problem, we introduce Intelligent reflect surface(IRS) for improving the achievable rate of terrestrial users in LEO satellite communication. We investigated joint IRS scheduling, user scheduling, power and bandwidth allocation(JIRPB) optimization algorithm for improving LEO satellite system throughput.The optimization problem of joint user scheduling and resource allocation is formulated as a non-convex optimization problem. To cope with this problem, the nonconvex optimization problem is divided into resource allocation optimization sub-problem and scheduling optimization sub-problem firstly. Second, we optimize the resource allocation sub-problem via alternating direction multiplier method(ADMM) and scheduling sub-problem via Lagrangian dual method repeatedly.Third, we prove that the proposed resource allocation algorithm based ADMM approaches sublinear convergence theoretically. Finally, we demonstrate that the proposed JIRPB optimization algorithm improves the LEO satellite communication system throughput.展开更多
In this paper,a physical model of RIS of bistatic polarized radar cross section is derived starting from the Stratton-Chu equations under the assumptions of physical optics,PEC,far field and rectangular RIS element.In...In this paper,a physical model of RIS of bistatic polarized radar cross section is derived starting from the Stratton-Chu equations under the assumptions of physical optics,PEC,far field and rectangular RIS element.In the context of important physical characteristics of the backscattering polarization of RIS,the modeling of the RIS wireless channel requires a tradeoff between complexity and accuracy,as well as usability and simplicity.For channel modeling of RIS systems,RIS is modelled as multi-equivalent virtual base stations(BSs)induced by multi polarized electromagnetic waves from different incident directions.The comparison between test and simulation results demonstrates that the proposed algorithm effectively captures the key characteristics of the general RIS element polarization physical model and provides accurate results.展开更多
This work employs intelligent reflecting surface(IRS)to enhance secure and covert communication performance.We formulate an optimization problem to jointly design both the reflection beamformer at IRS and transmit pow...This work employs intelligent reflecting surface(IRS)to enhance secure and covert communication performance.We formulate an optimization problem to jointly design both the reflection beamformer at IRS and transmit power at transmitter Alice in order to optimize the achievable secrecy rate at Bob subject to a covertness constraint.We first develop a Dinkelbach-based algorithm to achieve an upper bound performance and a high-quality solution.For reducing the overhead and computational complexity of the Dinkelbach-based scheme,we further conceive a low-complexity algorithm in which analytical expression for the IRS reflection beamforming is derived at each iteration.Examination result shows that the devised low-complexity algorithm is able to achieve similar secrecy rate performance as the Dinkelbach-based algorithm.Our examination also shows that introducing an IRS into the considered system can significantly improve the secure and covert communication performance relative to the scheme without IRS.展开更多
Intelligent Reflecting Surface(IRS),with the potential capability to reconstruct the electromagnetic propagation environment,evolves a new IRSassisted covert communications paradigm to eliminate the negligible detecti...Intelligent Reflecting Surface(IRS),with the potential capability to reconstruct the electromagnetic propagation environment,evolves a new IRSassisted covert communications paradigm to eliminate the negligible detection of malicious eavesdroppers by coherently beaming the scattered signals and suppressing the signals leakage.However,when multiple IRSs are involved,accurate channel estimation is still a challenge due to the extra hardware complexity and communication overhead.Besides the crossinterference caused by massive reflecting paths,it is hard to obtain the close-formed solution for the optimization of covert communications.On this basis,the paper improves a heterogeneous multi-agent deep deterministic policy gradient(MADDPG)approach for the joint active and passive beamforming(Joint A&P BF)optimization without the channel estimation,where the base station(BS)and multiple IRSs are taken as different types of agents and learn to enhance the covert spectrum efficiency(CSE)cooperatively.Thanks to the‘centralized training and distributed execution’feature of MADDPG,each agent can execute the active or passive beamforming independently based on its partial observation without referring to others.Numeral results demonstrate that the proposed deep reinforcement learning(DRL)approach could not only obtain a preferable CSE of legitimate users and a low detection of probability(LPD)of warden,but also alleviate the communication overhead and simplify the IRSs deployment.展开更多
Wireless Power Transfer(WPT)technology can provide real-time power for many terminal devices in Internet of Things(IoT)through millimeterWave(mmWave)to support applications with large capacity and low latency.Although...Wireless Power Transfer(WPT)technology can provide real-time power for many terminal devices in Internet of Things(IoT)through millimeterWave(mmWave)to support applications with large capacity and low latency.Although the intelligent reflecting surface(IRS)can be adopted to create effective virtual links to address the mmWave blockage problem,the conventional solutions only adopt IRS in the downlink from the Base Station(BS)to the users to enhance the received signal strength.In practice,the reflection of IRS is also applicable to the uplink to improve the spectral efficiency.It is a challenging to jointly optimize IRS beamforming and system resource allocation for wireless energy acquisition and information transmission.In this paper,we first design a Low-Energy Adaptive Clustering Hierarchy(LEACH)clustering protocol for clustering and data collection.Then,the problem of maximizing the minimum system spectral efficiency is constructed by jointly optimizing the transmit power of sensor devices,the uplink and downlink transmission times,the active beamforming at the BS,and the IRS dynamic beamforming.To solve this non-convex optimization problem,we propose an alternating optimization(AO)-based joint solution algorithm.Simulation results show that the use of IRS dynamic beamforming can significantly improve the spectral efficiency of the system,and ensure the reliability of equipment communication and the sustainability of energy supply under NLOS link.展开更多
A joint beamforming algorithm is proposed for intelligent reflecting surface(IRS) aided wireless multiple-input multiple-output(MIMO) communication using statistical channel state information(CSI). The beamforming is ...A joint beamforming algorithm is proposed for intelligent reflecting surface(IRS) aided wireless multiple-input multiple-output(MIMO) communication using statistical channel state information(CSI). The beamforming is done by alternatively optimizing the IRS reflecting coefficients and the covariance matrix of the transmit symbol vector, such that the ergodic rate of the system is maximized. The algorithm utilizes only the second order momentum of the random channel matrices and does assume any specific channel distribution, leading to a general framework for ergodic rate evaluation. A practical channel correlation model is configured to validate the performance gain. It is found that the rate can be enlarged by the joint optimization algorithm, however, the gain over that of randomly deployed reflecting coefficients depends highly on the relative correlation distance of the IRS elements and the spatial position of the IRS. In particular, the results suggest that IRS should be placed in the vicinity of either the transmitter or the receiver. Placing IRS far away from those positions is non-beneficial.展开更多
In this paper,we aim to unlock the potential of intelligent reflecting surfaces(IRSs)in cognitive internet of things(loT).Considering that the secondary IoT devices send messages to the secondary access point(SAP)by s...In this paper,we aim to unlock the potential of intelligent reflecting surfaces(IRSs)in cognitive internet of things(loT).Considering that the secondary IoT devices send messages to the secondary access point(SAP)by sharing the spectrum with the primary network,the interference is introduced by the IoT devices to the primary access point(PAP)which profits from the IoT devices by pricing the interference power charged by them.A practical path loss model is adopted such that the IRSs deployed between the IoT devices and SAP serve as diffuse scatterers,but each reflected signal can be aligned with its own desired direction.Moreover,two transmission policies of the secondary network are investigated without/with a successive interference cancellation(SIC)technique.The signal-to-interference plus noise ratio(SINR)balancing is considered to overcome the nearfar effect of the IoT devices so as to allocate the resource fairly among them.We propose a Stackelberg game strategy to characterize the interaction between primary and secondary networks.For the proposed game,the Stackelberg equilibrium is analytically derived to optimally obtain the closed-form solution of the power allocation and interference pricing.Numerical results are demonstrated to validate the performance of the theoretical derivations.展开更多
Terahertz(THz)communications have been widely envisioned as a promising enabler to provide adequate bandwidth and achieve ultra-high data rates for sixth generation(6G)wireless networks.In order to mitigate blockage v...Terahertz(THz)communications have been widely envisioned as a promising enabler to provide adequate bandwidth and achieve ultra-high data rates for sixth generation(6G)wireless networks.In order to mitigate blockage vulnerability caused by serious propagation attenuation and poor diffraction of THz waves,an intelligent reflecting surface(IRS),which manipulates the propagation of incident electromagnetic waves in a programmable manner by adjusting the phase shifts of passive reflecting elements,is proposed to create smart radio environments,improve spectrum efficiency and enhance coverage capability.Firstly,some prospective application scenarios driven by the IRS empowered THz communications are introduced,including wireless mobile communications,secure communications,unmanned aerial vehicle(UAV)scenario,mobile edge computing(MEC)scenario and THz localization scenario.Then,we discuss the enabling technologies employed by the IRS empowered THz system,involving hardware design,channel estimation,capacity optimization,beam control,resource allocation and robustness design.Moreover,the arising challenges and open problems encountered in the future IRS empowered THz communications are also highlighted.Concretely,these emerging problems possibly originate from channel modeling,new material exploration,experimental IRS testbeds and intensive deployment.Ultimately,the combination of THz communications and IRS is capable of accelerating the development of 6G wireless networks.展开更多
This paper considers a secure multigroup multicast multiple-input single-output(MISO)communication system aided by an intelligent reflecting surface(IRS).Specifically,we aim to minimize the transmit power at Alice via...This paper considers a secure multigroup multicast multiple-input single-output(MISO)communication system aided by an intelligent reflecting surface(IRS).Specifically,we aim to minimize the transmit power at Alice via jointly optimizing the transmit beamformer,artificial noise(AN)vector and phase shifts at the IRS subject to the secrecy rate constraints as well as the unit modulus constraints of IRS phase shifts.To tackle the optimization problem,we first transform it into a semidefinite relaxation(SDR)problem,and then alternately update the transmit beamformer and AN matrix as well as the phase shifts at the IRS.In order to reduce the high computational complexity,we further propose a low-complexity algorithm based on second-order cone programming(SOCP).We decouple the optimization problem into two sub-problems and optimize the transmit beamformer,AN vector and the phase shifts alternately by solving two corresponding SOCP subproblem.Simulation results show that the proposed SDR and SOCP schemes require half or less transmit power than the scheme without IRS,which demonstrates the advantages of introducing IRS and the effectiveness of the proposed methods.展开更多
Federated learning(FL), which allows multiple mobile devices to cooperatively train a machine learning model without sharing their data with the central server, has received widespread attention.However, the process o...Federated learning(FL), which allows multiple mobile devices to cooperatively train a machine learning model without sharing their data with the central server, has received widespread attention.However, the process of FL involves frequent communications between the server and mobile devices,which incurs a long latency. Intelligent reflecting surface(IRS) provides a promising technology to address this issue, thanks to its capacity to reconfigure the wireless propagation environment. In this paper, we exploit the advantage of IRS to reduce the latency of FL. Specifically, we formulate a latency minimization problem for the IRS assisted FL system, by optimizing the communication resource allocations including the devices’ transmit-powers, the uploading time, the downloading time, the multi-user decomposition matrix and the phase shift matrix of IRS. To solve this non-convex problem, we propose an efficient algorithm which is based on the Block Coordinate Descent(BCD) and the penalty difference of convex(DC) algorithm to compute the solution. Numerical results are provided to validate the efficiency of our proposed algorithm and demonstrate the benefit of deploying IRS for reducing the latency of FL. In particular, the results show that our algorithm can outperform the baseline of Majorization-Minimization(MM) algorithm with the fixed transmit-power by up to 30%.展开更多
Intelligent reflecting surfaces(IRSs)constitute passive devices,which are capable of adjusting the phase shifts of their reflected signals,and hence they are suitable for passive beamforming.In this paper,we conceive ...Intelligent reflecting surfaces(IRSs)constitute passive devices,which are capable of adjusting the phase shifts of their reflected signals,and hence they are suitable for passive beamforming.In this paper,we conceive their design with the active beamforming action of multiple-input multipleoutput(MIMO)systems used at the access points(APs)for improving the beamforming gain,where both the APs and users are equipped with multiple antennas.Firstly,we decouple the optimization problem and design the active beamforming for a given IRS configuration.Then we transform the optimization problem of the IRS-based passive beamforming design into a tractable non-convex quadratically constrained quadratic program(QCQP).For solving the transformed problem,we give an approximate solution based on the technique of widely used semidefinite relaxation(SDR).We also propose a low-complexity iterative solution.We further prove that it can converge to a locally optimal value.Finally,considering the practical scenario of discrete phase shifts at the IRS,we give the quantization design for IRS elements on basis of the two solutions.Our simulation results demonstrate the superiority of the proposed solutions over the relevant benchmarks.展开更多
It is assumed that reconfigurable intelligent surface(RIS)is a key technology to enable the potential of mmWave communications.The passivity of the RIS makes channel estimation difficult because the channel can only b...It is assumed that reconfigurable intelligent surface(RIS)is a key technology to enable the potential of mmWave communications.The passivity of the RIS makes channel estimation difficult because the channel can only be measured at the transceiver and not at the RIS.In this paper,we propose a novel separate channel estimator via exploiting the cascaded sparsity in the continuously valued angular domain of the cascaded channel for the RIS-enabled millimeter-wave/Tera-Hz systems,i.e.,the two-stage estimation method where the cascaded channel is separated into the base station(BS)-RIS and the RIS-user(UE)ones.Specifically,we first reveal the cascaded sparsity,i.e.,the sparsity exists in the hybrid angular domains of BS-RIS and the RIS-UEs separated channels,to construct the specific sparsity structure for RIS enabled multi-user systems.Then,we formulate the channel estimation problem using atomic norm minimization(ANM)to enhance the proposed sparsity structure in the continuous angular domains,where a low-complexity channel estimator via Alternating Direction Method of Multipliers(ADMM)is proposed.Simulation findings demonstrate that the proposed channel estimator outperforms the current state-of-the-arts in terms of performance.展开更多
We consider a scenario where an unmanned aerial vehicle(UAV),a typical unmanned aerial system(UAS),transmits confidential data to a moving ground target in the presence of multiple eavesdroppers.Multiple friendly reco...We consider a scenario where an unmanned aerial vehicle(UAV),a typical unmanned aerial system(UAS),transmits confidential data to a moving ground target in the presence of multiple eavesdroppers.Multiple friendly reconfigurable intelligent surfaces(RISs) help to secure the UAV-target communication and improve the energy efficiency of the UAV.We formulate an optimization problem to minimize the energy consumption of the UAV,subject to the mobility constraint of the UAV and that the achievable secrecy rate at the target is over a given threshold.We present an online planning method following the framework of model predictive control(MPC) to jointly optimize the motion of the UAV and the configurations of the RISs.The effectiveness of the proposed method is validated via computer simulations.展开更多
The performance of symbiotic radio(SR)networks can be improved by equipping secondary transmitters(STs)with intelligent reflecting surfaces(IRSs).Since the IRS power consumption is a non-negligible issue for STs,we co...The performance of symbiotic radio(SR)networks can be improved by equipping secondary transmitters(STs)with intelligent reflecting surfaces(IRSs).Since the IRS power consumption is a non-negligible issue for STs,we consider an IRS assisted SR system where the IRS operates under power splitting(PS)mode.We aim at minimizing the IRS power consumption for the ST under the quality of service constraints for both primary and secondary transmissions by optimizing the transmit beamforming,the reflect beamforming and the PS factor.The optimization problem is non-convex.To tackle it,an algorithm is proposed by employing the block coordinate descent,semidefinite relaxation and alternating direction method of multipliers techniques.Simulation results demonstrate the efficiency and effectiveness of the proposed algorithm.展开更多
基金supported by the National Key R&D Program of China under Grant 2020YFB1807900the National Natural Science Foundation of China (NSFC) under Grant 61931005Beijing University of Posts and Telecommunications-China Mobile Research Institute Joint Innovation Center。
文摘Lower Earth Orbit(LEO) satellite becomes an important part of complementing terrestrial communication due to its lower orbital altitude and smaller propagation delay than Geostationary satellite. However, the LEO satellite communication system cannot meet the requirements of users when the satellite-terrestrial link is blocked by obstacles. To solve this problem, we introduce Intelligent reflect surface(IRS) for improving the achievable rate of terrestrial users in LEO satellite communication. We investigated joint IRS scheduling, user scheduling, power and bandwidth allocation(JIRPB) optimization algorithm for improving LEO satellite system throughput.The optimization problem of joint user scheduling and resource allocation is formulated as a non-convex optimization problem. To cope with this problem, the nonconvex optimization problem is divided into resource allocation optimization sub-problem and scheduling optimization sub-problem firstly. Second, we optimize the resource allocation sub-problem via alternating direction multiplier method(ADMM) and scheduling sub-problem via Lagrangian dual method repeatedly.Third, we prove that the proposed resource allocation algorithm based ADMM approaches sublinear convergence theoretically. Finally, we demonstrate that the proposed JIRPB optimization algorithm improves the LEO satellite communication system throughput.
基金supported by Ministry of Science and Technology of the People’s Republic of China(2020YFB1808101)the Project“5G evolution wireless air interface intelligent R&D and verification public platform project”supported by Ministry of Industry and Information Technology of the People’s Republic of China(TC220A04M).
文摘In this paper,a physical model of RIS of bistatic polarized radar cross section is derived starting from the Stratton-Chu equations under the assumptions of physical optics,PEC,far field and rectangular RIS element.In the context of important physical characteristics of the backscattering polarization of RIS,the modeling of the RIS wireless channel requires a tradeoff between complexity and accuracy,as well as usability and simplicity.For channel modeling of RIS systems,RIS is modelled as multi-equivalent virtual base stations(BSs)induced by multi polarized electromagnetic waves from different incident directions.The comparison between test and simulation results demonstrates that the proposed algorithm effectively captures the key characteristics of the general RIS element polarization physical model and provides accurate results.
基金supported in part by National Natural Science Foundation of China under Grant 62371004 and Grant 62301005in part by the University Synergy Innovation Program of Anhui Province under Grant GXXT-2022-055+1 种基金in part by the Natural Science Foundation of Anhui Province under Grant 2308085QF197in part by the Natural Science Research Project of Education Department of Anhui Province of China under Grant 2023AH051031。
文摘This work employs intelligent reflecting surface(IRS)to enhance secure and covert communication performance.We formulate an optimization problem to jointly design both the reflection beamformer at IRS and transmit power at transmitter Alice in order to optimize the achievable secrecy rate at Bob subject to a covertness constraint.We first develop a Dinkelbach-based algorithm to achieve an upper bound performance and a high-quality solution.For reducing the overhead and computational complexity of the Dinkelbach-based scheme,we further conceive a low-complexity algorithm in which analytical expression for the IRS reflection beamforming is derived at each iteration.Examination result shows that the devised low-complexity algorithm is able to achieve similar secrecy rate performance as the Dinkelbach-based algorithm.Our examination also shows that introducing an IRS into the considered system can significantly improve the secure and covert communication performance relative to the scheme without IRS.
基金supported by the Key Laboratory of Near Ground Detection and Perception Technology(No.6142414220406 and 6142414210101)Shaanxi and Taicang Keypoint Research and Invention Program(No.2021GXLH-01-15 and TC2019SF03)。
文摘Intelligent Reflecting Surface(IRS),with the potential capability to reconstruct the electromagnetic propagation environment,evolves a new IRSassisted covert communications paradigm to eliminate the negligible detection of malicious eavesdroppers by coherently beaming the scattered signals and suppressing the signals leakage.However,when multiple IRSs are involved,accurate channel estimation is still a challenge due to the extra hardware complexity and communication overhead.Besides the crossinterference caused by massive reflecting paths,it is hard to obtain the close-formed solution for the optimization of covert communications.On this basis,the paper improves a heterogeneous multi-agent deep deterministic policy gradient(MADDPG)approach for the joint active and passive beamforming(Joint A&P BF)optimization without the channel estimation,where the base station(BS)and multiple IRSs are taken as different types of agents and learn to enhance the covert spectrum efficiency(CSE)cooperatively.Thanks to the‘centralized training and distributed execution’feature of MADDPG,each agent can execute the active or passive beamforming independently based on its partial observation without referring to others.Numeral results demonstrate that the proposed deep reinforcement learning(DRL)approach could not only obtain a preferable CSE of legitimate users and a low detection of probability(LPD)of warden,but also alleviate the communication overhead and simplify the IRSs deployment.
基金supported by the National Natural Science Foundation of China 62001051.
文摘Wireless Power Transfer(WPT)technology can provide real-time power for many terminal devices in Internet of Things(IoT)through millimeterWave(mmWave)to support applications with large capacity and low latency.Although the intelligent reflecting surface(IRS)can be adopted to create effective virtual links to address the mmWave blockage problem,the conventional solutions only adopt IRS in the downlink from the Base Station(BS)to the users to enhance the received signal strength.In practice,the reflection of IRS is also applicable to the uplink to improve the spectral efficiency.It is a challenging to jointly optimize IRS beamforming and system resource allocation for wireless energy acquisition and information transmission.In this paper,we first design a Low-Energy Adaptive Clustering Hierarchy(LEACH)clustering protocol for clustering and data collection.Then,the problem of maximizing the minimum system spectral efficiency is constructed by jointly optimizing the transmit power of sensor devices,the uplink and downlink transmission times,the active beamforming at the BS,and the IRS dynamic beamforming.To solve this non-convex optimization problem,we propose an alternating optimization(AO)-based joint solution algorithm.Simulation results show that the use of IRS dynamic beamforming can significantly improve the spectral efficiency of the system,and ensure the reliability of equipment communication and the sustainability of energy supply under NLOS link.
基金supported by the National Key R&D Program of China under grant 2018YFB1801101 and 2016YFB0502202Zhejiang Lab(No.2019LC0AB02),NSFC projects(61971136,61601119,61960206005,and 61803211)+3 种基金Jiangsu NSF project(No.BK20191261)the Fundamental Research Funds for the Central UniversitiesYoung Elite Scientist Sponsorship Program by CAST(YESS20160042)Zhishan Youth Scholar Program of SEU。
文摘A joint beamforming algorithm is proposed for intelligent reflecting surface(IRS) aided wireless multiple-input multiple-output(MIMO) communication using statistical channel state information(CSI). The beamforming is done by alternatively optimizing the IRS reflecting coefficients and the covariance matrix of the transmit symbol vector, such that the ergodic rate of the system is maximized. The algorithm utilizes only the second order momentum of the random channel matrices and does assume any specific channel distribution, leading to a general framework for ergodic rate evaluation. A practical channel correlation model is configured to validate the performance gain. It is found that the rate can be enlarged by the joint optimization algorithm, however, the gain over that of randomly deployed reflecting coefficients depends highly on the relative correlation distance of the IRS elements and the spatial position of the IRS. In particular, the results suggest that IRS should be placed in the vicinity of either the transmitter or the receiver. Placing IRS far away from those positions is non-beneficial.
基金This work was supported by the U.K.Engineering and Physical Sciences Research Council under Grants EP/P008402/2 and EP/R001588/1.
文摘In this paper,we aim to unlock the potential of intelligent reflecting surfaces(IRSs)in cognitive internet of things(loT).Considering that the secondary IoT devices send messages to the secondary access point(SAP)by sharing the spectrum with the primary network,the interference is introduced by the IoT devices to the primary access point(PAP)which profits from the IoT devices by pricing the interference power charged by them.A practical path loss model is adopted such that the IRSs deployed between the IoT devices and SAP serve as diffuse scatterers,but each reflected signal can be aligned with its own desired direction.Moreover,two transmission policies of the secondary network are investigated without/with a successive interference cancellation(SIC)technique.The signal-to-interference plus noise ratio(SINR)balancing is considered to overcome the nearfar effect of the IoT devices so as to allocate the resource fairly among them.We propose a Stackelberg game strategy to characterize the interaction between primary and secondary networks.For the proposed game,the Stackelberg equilibrium is analytically derived to optimally obtain the closed-form solution of the power allocation and interference pricing.Numerical results are demonstrated to validate the performance of the theoretical derivations.
基金supported by the National Key Research and Development Project of China under Grant 2018YFB1801500supported in part by The National Natural Science Foundation of China under Grant 6162780166 and Grant 61831012.
文摘Terahertz(THz)communications have been widely envisioned as a promising enabler to provide adequate bandwidth and achieve ultra-high data rates for sixth generation(6G)wireless networks.In order to mitigate blockage vulnerability caused by serious propagation attenuation and poor diffraction of THz waves,an intelligent reflecting surface(IRS),which manipulates the propagation of incident electromagnetic waves in a programmable manner by adjusting the phase shifts of passive reflecting elements,is proposed to create smart radio environments,improve spectrum efficiency and enhance coverage capability.Firstly,some prospective application scenarios driven by the IRS empowered THz communications are introduced,including wireless mobile communications,secure communications,unmanned aerial vehicle(UAV)scenario,mobile edge computing(MEC)scenario and THz localization scenario.Then,we discuss the enabling technologies employed by the IRS empowered THz system,involving hardware design,channel estimation,capacity optimization,beam control,resource allocation and robustness design.Moreover,the arising challenges and open problems encountered in the future IRS empowered THz communications are also highlighted.Concretely,these emerging problems possibly originate from channel modeling,new material exploration,experimental IRS testbeds and intensive deployment.Ultimately,the combination of THz communications and IRS is capable of accelerating the development of 6G wireless networks.
基金supported in part by the National Natural Science Foundation of China under Grants 62071234,61901121 and 61771244in part by the Natural Science Research Project of Education Department of Anhui Province of China under Grant KJ2019A1002.
文摘This paper considers a secure multigroup multicast multiple-input single-output(MISO)communication system aided by an intelligent reflecting surface(IRS).Specifically,we aim to minimize the transmit power at Alice via jointly optimizing the transmit beamformer,artificial noise(AN)vector and phase shifts at the IRS subject to the secrecy rate constraints as well as the unit modulus constraints of IRS phase shifts.To tackle the optimization problem,we first transform it into a semidefinite relaxation(SDR)problem,and then alternately update the transmit beamformer and AN matrix as well as the phase shifts at the IRS.In order to reduce the high computational complexity,we further propose a low-complexity algorithm based on second-order cone programming(SOCP).We decouple the optimization problem into two sub-problems and optimize the transmit beamformer,AN vector and the phase shifts alternately by solving two corresponding SOCP subproblem.Simulation results show that the proposed SDR and SOCP schemes require half or less transmit power than the scheme without IRS,which demonstrates the advantages of introducing IRS and the effectiveness of the proposed methods.
基金supported in part by National Natural Science Foundation of China under Grants 62122069, 62072490, 62071431, and 61871271in part by Science and Technology Development Fund of Macao SAR under Grants 0060/2019/A1 and 0162/2019/A3+5 种基金in part by FDCT-MOST Joint Project under Grant 0066/2019/AMJin part by the Intergovernmental International Cooperation in Science and Technology Innovation Program under Grant 2019YFE0111600in part by FDCT SKL-IOTSC(UM)-2021-2023in part by Zhejiang Provincial Natural Science Foundation of China under Grant LR17F010002in part by the Shenzhen Science and Technology Program under Projects JCYJ20210324093011030 and JCYJ20190808120415286in part by Research Grant of University of Macao under Grants MYRG2020-00107-IOTSC and SRG201900168-IOTSC。
文摘Federated learning(FL), which allows multiple mobile devices to cooperatively train a machine learning model without sharing their data with the central server, has received widespread attention.However, the process of FL involves frequent communications between the server and mobile devices,which incurs a long latency. Intelligent reflecting surface(IRS) provides a promising technology to address this issue, thanks to its capacity to reconfigure the wireless propagation environment. In this paper, we exploit the advantage of IRS to reduce the latency of FL. Specifically, we formulate a latency minimization problem for the IRS assisted FL system, by optimizing the communication resource allocations including the devices’ transmit-powers, the uploading time, the downloading time, the multi-user decomposition matrix and the phase shift matrix of IRS. To solve this non-convex problem, we propose an efficient algorithm which is based on the Block Coordinate Descent(BCD) and the penalty difference of convex(DC) algorithm to compute the solution. Numerical results are provided to validate the efficiency of our proposed algorithm and demonstrate the benefit of deploying IRS for reducing the latency of FL. In particular, the results show that our algorithm can outperform the baseline of Majorization-Minimization(MM) algorithm with the fixed transmit-power by up to 30%.
基金supported in part by the the National Key Research and Development Program of China under No.2019YFB1803200by the National Natural Science Foundation of China(NSFC)under Grant 61620106001 and 61901034.
文摘Intelligent reflecting surfaces(IRSs)constitute passive devices,which are capable of adjusting the phase shifts of their reflected signals,and hence they are suitable for passive beamforming.In this paper,we conceive their design with the active beamforming action of multiple-input multipleoutput(MIMO)systems used at the access points(APs)for improving the beamforming gain,where both the APs and users are equipped with multiple antennas.Firstly,we decouple the optimization problem and design the active beamforming for a given IRS configuration.Then we transform the optimization problem of the IRS-based passive beamforming design into a tractable non-convex quadratically constrained quadratic program(QCQP).For solving the transformed problem,we give an approximate solution based on the technique of widely used semidefinite relaxation(SDR).We also propose a low-complexity iterative solution.We further prove that it can converge to a locally optimal value.Finally,considering the practical scenario of discrete phase shifts at the IRS,we give the quantization design for IRS elements on basis of the two solutions.Our simulation results demonstrate the superiority of the proposed solutions over the relevant benchmarks.
文摘It is assumed that reconfigurable intelligent surface(RIS)is a key technology to enable the potential of mmWave communications.The passivity of the RIS makes channel estimation difficult because the channel can only be measured at the transceiver and not at the RIS.In this paper,we propose a novel separate channel estimator via exploiting the cascaded sparsity in the continuously valued angular domain of the cascaded channel for the RIS-enabled millimeter-wave/Tera-Hz systems,i.e.,the two-stage estimation method where the cascaded channel is separated into the base station(BS)-RIS and the RIS-user(UE)ones.Specifically,we first reveal the cascaded sparsity,i.e.,the sparsity exists in the hybrid angular domains of BS-RIS and the RIS-UEs separated channels,to construct the specific sparsity structure for RIS enabled multi-user systems.Then,we formulate the channel estimation problem using atomic norm minimization(ANM)to enhance the proposed sparsity structure in the continuous angular domains,where a low-complexity channel estimator via Alternating Direction Method of Multipliers(ADMM)is proposed.Simulation findings demonstrate that the proposed channel estimator outperforms the current state-of-the-arts in terms of performance.
基金funding from the Australian Government,via grant AUSMURIB000001 associated with ONR MURI Grant N00014-19-1-2571。
文摘We consider a scenario where an unmanned aerial vehicle(UAV),a typical unmanned aerial system(UAS),transmits confidential data to a moving ground target in the presence of multiple eavesdroppers.Multiple friendly reconfigurable intelligent surfaces(RISs) help to secure the UAV-target communication and improve the energy efficiency of the UAV.We formulate an optimization problem to minimize the energy consumption of the UAV,subject to the mobility constraint of the UAV and that the achievable secrecy rate at the target is over a given threshold.We present an online planning method following the framework of model predictive control(MPC) to jointly optimize the motion of the UAV and the configurations of the RISs.The effectiveness of the proposed method is validated via computer simulations.
基金supported by the Fundamental Research Funds for the Central Universities(No.FRF-TP-20-106A1)。
文摘The performance of symbiotic radio(SR)networks can be improved by equipping secondary transmitters(STs)with intelligent reflecting surfaces(IRSs).Since the IRS power consumption is a non-negligible issue for STs,we consider an IRS assisted SR system where the IRS operates under power splitting(PS)mode.We aim at minimizing the IRS power consumption for the ST under the quality of service constraints for both primary and secondary transmissions by optimizing the transmit beamforming,the reflect beamforming and the PS factor.The optimization problem is non-convex.To tackle it,an algorithm is proposed by employing the block coordinate descent,semidefinite relaxation and alternating direction method of multipliers techniques.Simulation results demonstrate the efficiency and effectiveness of the proposed algorithm.