To reduce the computational complexity of matrix inversion, which is the majority of processing in many practical applications, two numerically efficient recursive algorithms (called algorithms I and II, respectively...To reduce the computational complexity of matrix inversion, which is the majority of processing in many practical applications, two numerically efficient recursive algorithms (called algorithms I and II, respectively) are presented. Algorithm I is used to calculate the inverse of such a matrix, whose leading principal minors are all nonzero. Algorithm II, whereby, the inverse of an arbitrary nonsingular matrix can be evaluated is derived via improving the algorithm I. The implementation, for algorithm II or I, involves matrix-vector multiplications and vector outer products. These operations are computationally fast and highly parallelizable. MATLAB simulations show that both recursive algorithms are valid.展开更多
The piecewise linear recursive convolution (PLRC) finite-different time-domain (FDTD) method greatly improves accuracy over the original recursive convolution (RC) FDTD approach but retains its speed and efficie...The piecewise linear recursive convolution (PLRC) finite-different time-domain (FDTD) method greatly improves accuracy over the original recursive convolution (RC) FDTD approach but retains its speed and efficiency advantages. A PLRC-FDTD formulation for magnetized plasma which incorporates both anisotropy and frequency dispersion at the same time is presented, enabled the transient analysis of magnetized plasma media. The technique is illustrated by numerical simulations the reflection and transmission coefficients through a magnetized plasma layer. The results show that the PLRC-FDTD method has significantly improved the accuracy over the original RC method.展开更多
Recently, a two-dimensional (2-D) Tsallis entropy thresholding method has been proposed as a new method for image segmentation. But the computation complexity of 2-D Tsallis entropy is very large and becomes an obst...Recently, a two-dimensional (2-D) Tsallis entropy thresholding method has been proposed as a new method for image segmentation. But the computation complexity of 2-D Tsallis entropy is very large and becomes an obstacle to real time image processing systems. A fast recursive algorithm for 2-D Tsallis entropy thresholding is proposed. The key variables involved in calculating 2-D Tsallis entropy are written in recursive form. Thus, many repeating calculations are avoided and the computation complexity reduces to O(L2) from O(L4). The effectiveness of the proposed algorithm is illustrated by experimental results.展开更多
The strap-down inertial navigation system (SINS) error of ballistic missile is generated by the mutual influence of gyroscope and accelerometer, and the recursive model is completely different from that of gimbaled IN...The strap-down inertial navigation system (SINS) error of ballistic missile is generated by the mutual influence of gyroscope and accelerometer, and the recursive model is completely different from that of gimbaled INS. In the paper, a discrete error recursive model was obtained by studying the applied SINS error model of ballistic missile, and the discrete Kalman filtering simulation based on the model was carried out. The simulated results show that the model can depict the SINS error exactly and provide the advantages for research on integrated guidance and improved hit accuracy.展开更多
A forward recursive formulation based on corotational frame is proposed for flexible planar beams with large displacement.The traditional recursive formulation has been successfully used for flexible mutibody dynamics...A forward recursive formulation based on corotational frame is proposed for flexible planar beams with large displacement.The traditional recursive formulation has been successfully used for flexible mutibody dynamics to improve the computational efficiency based on floating frame,in which the assumption of small strain and deflection is adopted.The proposed recursive formulation could be used for large displacement problems based on the corotational frame.It means that the recursive scheme is used not only for adjacent bodies but also for adjacent beam elements.The nodal relative rotation coordinates of the planar beam are used to obtain equations with minimal generalized coordinates in present formulation.The proposed formulation is different from absolute nodal coordinate formulation and the geometrically exact beam formulation in which the absolute coordinates are used.The recursive scheme and minimal set of dynamic equations lead to a high computational efficiency in numerical integration.Numerical examples are carried out to demonstrate the accuracy and validity of this formulation.For all of the examples,the results of the present formulation are in good agreement with results obtained using commercial software and the published results.Moreover,it is shown that the present formulation is more efficient than the formulation in ANSYS based on GEBF.展开更多
Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matri...Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness.展开更多
Based on the sequential probability ratio test(SPRT)developed by Wald,an improved method for successful probability test of missile flight is proposed.A recursive algorithm and its program in Matlab are designed to ca...Based on the sequential probability ratio test(SPRT)developed by Wald,an improved method for successful probability test of missile flight is proposed.A recursive algorithm and its program in Matlab are designed to calculate the real risk level of the sequential test decision and the average number of samples under various test conditions.A concept,that is "rejecting as soon as possible",is put forward and an alternate operation strategy is conducted.The simulation results show that it can reduce the test expenses.展开更多
中点钳位(neutral point clamped,NPC)型三电平逆变器并网工作环境恶劣,IGBT面临单管与双管同时故障的挑战,这使得故障特征之间的差异变得非常微弱,进而导致双管故障的识别精度难以有效提升。为此,提出了一种新的故障诊断方法,该方法结...中点钳位(neutral point clamped,NPC)型三电平逆变器并网工作环境恶劣,IGBT面临单管与双管同时故障的挑战,这使得故障特征之间的差异变得非常微弱,进而导致双管故障的识别精度难以有效提升。为此,提出了一种新的故障诊断方法,该方法结合了多通道的二维递归融合图和轻量化多尺度残差(lightweightmultiscale convolutional residuals,LMCR)网络。首先,通过仿真获取三相电流信号作为故障信号;再利用递归图(recurrence plot,RP)将三相电流信号分别转化为二维图并进行多通道融合,以捕捉时间序列中的周期性、突变点和趋势等特征;最后,将递归融合图作为输入,输入到LMCR模型中进行故障识别,LMCR模型整合多级Inception结构和残差网络,用于提取不同尺度的特征并融合这些特征,从而保证网络的梯度消失和爆炸。实验结果显示,该方法在IGBT故障识别中表现出色,无噪声环境下平均识别准确率达100%,噪声环境中也达到了92.53%,充分证明了该方法具有较强的特征提取能力和优异的抗噪性能。展开更多
文摘To reduce the computational complexity of matrix inversion, which is the majority of processing in many practical applications, two numerically efficient recursive algorithms (called algorithms I and II, respectively) are presented. Algorithm I is used to calculate the inverse of such a matrix, whose leading principal minors are all nonzero. Algorithm II, whereby, the inverse of an arbitrary nonsingular matrix can be evaluated is derived via improving the algorithm I. The implementation, for algorithm II or I, involves matrix-vector multiplications and vector outer products. These operations are computationally fast and highly parallelizable. MATLAB simulations show that both recursive algorithms are valid.
基金The project was supported by the National Natural Science Foundation of China (60471002) and the Jiangxi ProvincialNatural Science Foundation (0412014)
文摘The piecewise linear recursive convolution (PLRC) finite-different time-domain (FDTD) method greatly improves accuracy over the original recursive convolution (RC) FDTD approach but retains its speed and efficiency advantages. A PLRC-FDTD formulation for magnetized plasma which incorporates both anisotropy and frequency dispersion at the same time is presented, enabled the transient analysis of magnetized plasma media. The technique is illustrated by numerical simulations the reflection and transmission coefficients through a magnetized plasma layer. The results show that the PLRC-FDTD method has significantly improved the accuracy over the original RC method.
基金supported by the National Natural Science Foundation of China for Distinguished Young Scholars(60525303)Doctoral Foundation of Yanshan University(B243).
文摘Recently, a two-dimensional (2-D) Tsallis entropy thresholding method has been proposed as a new method for image segmentation. But the computation complexity of 2-D Tsallis entropy is very large and becomes an obstacle to real time image processing systems. A fast recursive algorithm for 2-D Tsallis entropy thresholding is proposed. The key variables involved in calculating 2-D Tsallis entropy are written in recursive form. Thus, many repeating calculations are avoided and the computation complexity reduces to O(L2) from O(L4). The effectiveness of the proposed algorithm is illustrated by experimental results.
文摘The strap-down inertial navigation system (SINS) error of ballistic missile is generated by the mutual influence of gyroscope and accelerometer, and the recursive model is completely different from that of gimbaled INS. In the paper, a discrete error recursive model was obtained by studying the applied SINS error model of ballistic missile, and the discrete Kalman filtering simulation based on the model was carried out. The simulated results show that the model can depict the SINS error exactly and provide the advantages for research on integrated guidance and improved hit accuracy.
基金Projects(11772188,11132007,11202126)supported by the National Natural Science Foundation of ChinaProject(11ZR1417000)supported by the Natural Science Foundation of Shanghai,China
文摘A forward recursive formulation based on corotational frame is proposed for flexible planar beams with large displacement.The traditional recursive formulation has been successfully used for flexible mutibody dynamics to improve the computational efficiency based on floating frame,in which the assumption of small strain and deflection is adopted.The proposed recursive formulation could be used for large displacement problems based on the corotational frame.It means that the recursive scheme is used not only for adjacent bodies but also for adjacent beam elements.The nodal relative rotation coordinates of the planar beam are used to obtain equations with minimal generalized coordinates in present formulation.The proposed formulation is different from absolute nodal coordinate formulation and the geometrically exact beam formulation in which the absolute coordinates are used.The recursive scheme and minimal set of dynamic equations lead to a high computational efficiency in numerical integration.Numerical examples are carried out to demonstrate the accuracy and validity of this formulation.For all of the examples,the results of the present formulation are in good agreement with results obtained using commercial software and the published results.Moreover,it is shown that the present formulation is more efficient than the formulation in ANSYS based on GEBF.
基金This work is supported by Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX18_0467)Jiangsu Province,China.During the revision of this paper,the author is supported by China Scholarship Council(No.201906840021)China to continue some research related to data processing.
文摘Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness.
文摘Based on the sequential probability ratio test(SPRT)developed by Wald,an improved method for successful probability test of missile flight is proposed.A recursive algorithm and its program in Matlab are designed to calculate the real risk level of the sequential test decision and the average number of samples under various test conditions.A concept,that is "rejecting as soon as possible",is put forward and an alternate operation strategy is conducted.The simulation results show that it can reduce the test expenses.