期刊文献+
共找到526篇文章
< 1 2 27 >
每页显示 20 50 100
基于轻量化改进ERNIE-RCNN的中文新闻标题分类
1
作者 李莉 张之欣 王小龙 《科学技术与工程》 北大核心 2025年第2期649-656,共8页
针对大型预训练语言模型在处理新闻标题时,面临参数规模庞大、无法高效利用上下文语意特征以及循环卷积神经网络对初始输入元素重要性忽视的问题,提出了一种融合混合专家模型(mixture-of-expert,MoE)的ERNIE与注意力机制的循环卷积神经... 针对大型预训练语言模型在处理新闻标题时,面临参数规模庞大、无法高效利用上下文语意特征以及循环卷积神经网络对初始输入元素重要性忽视的问题,提出了一种融合混合专家模型(mixture-of-expert,MoE)的ERNIE与注意力机制的循环卷积神经网络(recurrent convolutional neural networks,RCNN)的新闻标题分类方法。首先,借助MoE改进ERNIE技术进行文本编码,随后利用注意力RCNN在保留文本词序和特征的基础上进行分类。为提高分类能力,通过计算输入的融合上下文权重对RCNN进行改进。在计算MoE中各个专家权重的过程中,选择Gumbel_Softmax作为新型的门控函数以改进传统的Softmax函数,从而更好地控制平滑程度。根据实验结果,发现相较于传统的分类方法,本文研究提出的分类方法展现出显著优势,极大地减少了参数数量。在此基础上,F_(1)相较于传统模型提升了0.51%。经过消融实验的验证,该分类方法在分类任务上的可行性得到了证实。 展开更多
关键词 混合专家系统 知识增强语义表示模型 注意力机制 循环卷积神经网络 文本分类
在线阅读 下载PDF
基于CFRP-DDRCNN的CFRP缺陷检测方法
2
作者 章栩苓 周正东 +4 位作者 毛玲 张灵维 魏士松 盛涛 郑金华 《振动.测试与诊断》 北大核心 2025年第3期589-593,627,共6页
针对碳纤维增强复合材料(carbon fiber reinforced polymer,简称CFRP)缺陷检测通常由人工进行,存在检测效率低和漏检等问题,以掩码区域卷积神经网络(mask region based convolution nerual network,简称Mask R-CNN)为基础,提出了一种新... 针对碳纤维增强复合材料(carbon fiber reinforced polymer,简称CFRP)缺陷检测通常由人工进行,存在检测效率低和漏检等问题,以掩码区域卷积神经网络(mask region based convolution nerual network,简称Mask R-CNN)为基础,提出了一种新的碳纤维增强复合材料缺陷检测网络(carbon fiber reinforced polymer defect detect region based convolutional neural network,简称CFRP-DDRCNN)。首先,该网络前端设置了图像裁剪和背景去除模块(background removal module,简称BRM),以提升网络的缺陷检测效率和精度;其次,引入分割图像数据集,将其和原图像数据集一起进行网络训练,以提高网络的缺陷检测精度;然后,引入注意力机制,提高网络的缺陷特征提取能力;最后,通过缺陷尺寸聚类对锚框参数进行优化,以提高缺陷检测精度。实验结果表明,所提出的CFRP-DDRCNN具有良好的CFRP缺陷检测性能,能有效提高CFRP缺陷的检测精度,与Mask R-CNN相比,CFRP-DDRCNN使CFRP缺陷检测的平均精准度提高了87.74%。 展开更多
关键词 碳纤维增强复合材料 掩码区域卷积神经网络 图像分割 碳纤维增强复合材料缺陷检测网络 缺陷检测
在线阅读 下载PDF
基于改进Faster-RCNN的起重机钢丝绳表面缺陷识别方法
3
作者 苏立鹏 娄益凡 +3 位作者 杨吴奔 高建貌 王雪迎 易灿灿 《机电工程》 北大核心 2025年第7期1341-1349,共9页
针对现有的起重机钢丝绳表面缺陷检测中存在的检测效率低、准确度差、鲁棒性有限等问题,提出了一种基于改进快速区域卷积神经网络(Faster-RCNN)的起重机钢丝绳表面缺陷识别检测方法,该方法结合多个关键技术,显著提升了钢丝绳表面缺陷识... 针对现有的起重机钢丝绳表面缺陷检测中存在的检测效率低、准确度差、鲁棒性有限等问题,提出了一种基于改进快速区域卷积神经网络(Faster-RCNN)的起重机钢丝绳表面缺陷识别检测方法,该方法结合多个关键技术,显著提升了钢丝绳表面缺陷识别的性能。首先,采用了多尺度策略提高输入图像的分辨率,从而更好地检测不同大小的缺陷;其次,在网络中引入了可变形卷积,以增强其捕捉传统卷积技术难以检测的钢丝绳缺陷复杂形状特征的能力;采用了路径增强技术融合低维和高维特征,有效解决了在下采样和特征融合过程中信息丢失的问题,极大提升了模型在各层之间保持关键信息的能力;最后,采用了广义交并比(GIOU)损失函数替代传统的交并比(IOU)损失函数,显著提高了边界框预测的准确性,验证了改进后的Faster-RCNN算法在起重机钢丝绳损伤检测的性能提升方面较为显著。研究结果表明:改进版Faster-RCNN模型相比原算法在精度上有了显著提高,准确率从81.8%提升至90.2%,召回率从83.8%提高至94.2%,最终平均精度达到0.934,提升了9.6%。与传统检测算法如SSD和原版YOLOv5相比,该方法的准确率分别提高了17.6%和11.0%,证明了其在钢丝绳损伤图像识别中的有效性。 展开更多
关键词 起重机械 损伤检测 改进的快速区域卷积神经网络 多尺度和自定义锚框策略 广义交并比损失函数 可变形卷积 路径增强特征金字塔 区域提议网络 消融实验
在线阅读 下载PDF
多尺度特征和极化自注意力的Faster-RCNN水漂垃圾识别 被引量:1
4
作者 蒋占军 吴佰靖 +1 位作者 马龙 廉敬 《计算机应用》 CSCD 北大核心 2024年第3期938-944,共7页
针对小目标水漂垃圾形态多变、分辨率低且信息有限,导致检测效果不理想的问题,提出一种改进的Faster-RCNN(Faster Regions with Convolutional Neural Network)水漂垃圾检测算法MP-Faster-RCNN(Faster-RCNN with Multi-scale feature an... 针对小目标水漂垃圾形态多变、分辨率低且信息有限,导致检测效果不理想的问题,提出一种改进的Faster-RCNN(Faster Regions with Convolutional Neural Network)水漂垃圾检测算法MP-Faster-RCNN(Faster-RCNN with Multi-scale feature and Polarized self-attention)。首先,建立黄河兰州段小目标水漂垃圾数据集,将空洞卷积结合ResNet-50代替原来的VGG-16(Visual Geometry Group 16)作为主干特征提取网络,扩大感受野以提取更多小目标特征;其次,在区域生成网络(RPN)利用多尺度特征,设置3×3和1×1的两层卷积,补偿单一滑动窗口造成的特征丢失;最后,在RPN前加入极化自注意力,进一步利用多尺度和通道特征提取更细粒度的多尺度空间信息和通道间依赖关系,生成具有全局特征的特征图,实现更精确的目标框定位。实验结果表明,MP-Faster-RCNN能有效提高水漂垃圾检测精度,与原始Faster-RCNN相比,平均精度均值(mAP)提高了6.37个百分点,模型大小从521 MB降到了108 MB,且在同一训练批次下收敛更快。 展开更多
关键词 目标检测 水漂垃圾 Faster-rcnn 空洞卷积 多尺度特征融合 极化自注意力
在线阅读 下载PDF
基于RoBERTa-RCNN和注意力池化的新闻主题文本分类 被引量:4
5
作者 王乾 曾诚 +2 位作者 何鹏 张海丰 余新言 《郑州大学学报(理学版)》 CAS 北大核心 2024年第2期43-50,共8页
针对中文新闻主题因缺乏上下文信息而造成语义模糊和用词规范性不高的问题,提出一种基于RoBERTa-RCNN和多头注意力池化机制的新闻主题文本分类方法。利用数据增强技术对部分训练数据进行回译处理,再通过自编码预训练模型和RCNN对文本进... 针对中文新闻主题因缺乏上下文信息而造成语义模糊和用词规范性不高的问题,提出一种基于RoBERTa-RCNN和多头注意力池化机制的新闻主题文本分类方法。利用数据增强技术对部分训练数据进行回译处理,再通过自编码预训练模型和RCNN对文本进行初步和深度的特征提取,并结合多头注意力思想改进最大池化层。该方法采用融合机制,改善了RCNN中最大池化策略单一和无法进行动态优化的缺陷。在三个新闻主题数据集上进行实验,使用更适用于新闻主题分类的Mish函数代替ReLU函数,并利用标签平滑来解决过拟合问题。结果表明,所提方法相比传统分类方法效果突出,并通过消融实验验证了模型在分类任务上的可行性。 展开更多
关键词 预训练语言模型 文本分类 循环卷积神经网络 注意力机制 标签平滑 数据增强
在线阅读 下载PDF
基于改进的Faster RCNN的仪表自动识别方法 被引量:4
6
作者 王欣然 张斌 +1 位作者 湛敏 赵成龙 《机电工程》 CAS 北大核心 2024年第3期532-539,共8页
在环境复杂的工业场景中,仪表盘存在类别多、相似性高等问题,导致检测的识别效果较差、准确率不高。针对这一问题,提出了一种基于改进的更快速的区域卷积神经网络(Faster RCNN)的仪表自动识别方法。首先,采用残差网络(Resnet)101代替视... 在环境复杂的工业场景中,仪表盘存在类别多、相似性高等问题,导致检测的识别效果较差、准确率不高。针对这一问题,提出了一种基于改进的更快速的区域卷积神经网络(Faster RCNN)的仪表自动识别方法。首先,采用残差网络(Resnet)101代替视觉几何群网络(VGG)16,进行了网络结构简化;然后,引入了特征金字塔网络(FPN),并将其改进为递归特征金字塔网络后进行了迭代融合,输出了特征图;接着,引入了注意力机制模块,根据特征的重要程度,完成了对输出通道权值的重新分配,增强了Faster RCNN对目标的运算能力;提出了改进非极大值抑制算法(Softer-NMS),通过降低置信度来确定准确的目标候选框;最后,采用Mosaic数据增强技术对可视对象类(VOC)2007数据集进行了扩充,对改进后的Faster RCNN模型进行了仪表自动识别的实验。研究结果表明:在相同工业环境下,与传统的Faster RCNN算法模型相比,改进后的Faster RCNN模型准确率为93.5%,较原模型提高了3.8%,mAP值为92.6%,较原模型提高了3.7%,可见该方法在实际生产中具有较强的鲁棒性与泛化能力,可满足工业上对智能检测的要求。 展开更多
关键词 仪表识别 更快速的区域卷积神经网络 递归特征金字塔网络 注意力机制 非极大值抑制算法 Mosaic数据增强技术
在线阅读 下载PDF
基于MSCNN-GRU神经网络补全测井曲线和可解释性的智能岩性识别 被引量:1
7
作者 王婷婷 王振豪 +2 位作者 赵万春 蔡萌 史晓东 《石油地球物理勘探》 北大核心 2025年第1期1-11,共11页
针对传统岩性识别方法在处理测井曲线缺失、准确性以及模型可解释性等方面的不足,提出了一种基于MSCNN-GRU神经网络补全测井曲线和Optuna超参数优化的XGBoost模型的可解释性的岩性识别方法。首先,针对测井曲线在特定层段丢失或失真的问... 针对传统岩性识别方法在处理测井曲线缺失、准确性以及模型可解释性等方面的不足,提出了一种基于MSCNN-GRU神经网络补全测井曲线和Optuna超参数优化的XGBoost模型的可解释性的岩性识别方法。首先,针对测井曲线在特定层段丢失或失真的问题,引入了基于多尺度卷积神经网络(MSCNN)与门控循环单元(GRU)神经网络相结合的曲线重构方法,为后续的岩性识别提供了准确的数据基础;其次,利用小波包自适应阈值方法对数据进行去噪和归一化处理,以减少噪声对岩性识别的影响;然后,采用Optuna框架确定XGBoost算法的超参数,建立了高效的岩性识别模型;最后,利用SHAP可解释性方法对XGBoost模型进行归因分析,揭示了不同特征对于岩性识别的贡献度,提升了模型的可解释性。结果表明,Optuna-XGBoost模型综合岩性识别准确率为79.91%,分别高于支持向量机(SVM)、朴素贝叶斯、随机森林三种神经网络模型24.89%、12.45%、6.33%。基于Optuna-XGBoost模型的SHAP可解释性的岩性识别方法具有更高的准确性和可解释性,能够更好地满足实际生产需要。 展开更多
关键词 岩性识别 多尺度卷积神经网络 门控循环单元神经网络 XGBoost 超参数优化 可解释性
在线阅读 下载PDF
基于多空间维度联合方法改进的BiLSTM出水氨氮预测方法 被引量:2
8
作者 王雷 张煜 +3 位作者 赵艺琨 刘明勇 刘子航 李杰 《中国农村水利水电》 北大核心 2025年第2期17-24,共8页
出水氨氮作为衡量污水处理厂水质处理工艺的重要指标之一,准确预测污水处理厂出水水质中的氨氮含量对于及时调整处理工艺,保障水环境安全有着重要的作用。提出了一种基于联合多空间维度(Multi-spatial Dimensional Cooperative Attenti... 出水氨氮作为衡量污水处理厂水质处理工艺的重要指标之一,准确预测污水处理厂出水水质中的氨氮含量对于及时调整处理工艺,保障水环境安全有着重要的作用。提出了一种基于联合多空间维度(Multi-spatial Dimensional Cooperative Attention)改进的双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)的水质预测模型,首先通过皮尔逊(Pearson)系数法筛选出与出水氨氮相关性较强的总氮、污泥沉降比和温度3个指标作为模型输入,联合3个维度的强相关信息对未来6 h的出水氨氮进行预测。结果表明,MDCA-BiLSTM模型在融合残差序列后对出水氨氮的预测准确率R2为0.979,并在太平污水处理厂和文昌污水处理厂两个站点收集到的数据集上总氮、总磷和溶解氧的均方根误差分别为0.002、0.003、0.001和0.004、0.003、0.002;预测精度分别为0.959、0.947、0.971和0.962、0.951、0.983;与BiLSTM相比,均方根误差分别降低了0.007、0.007、0.007和0.017、0.006、0.005;预测精度分别提高了0.176、0.183、0.258和0.098、0.109、0.11。同时,该模型在面对未来6、12和24 h的预测步长时,仍能够达到0.956、0.933和0.917的预测精度,说明改进后的模型在预测准确性和鲁棒性方面表现出显著优势。该方法能够有效提高污水处理厂出水氨氮的及其他指标的预测准确性,可作为水资源循环和管理决策的一种有效参考手段,具有较强的实际应用价值。 展开更多
关键词 水质参数 时序预测 时序卷积网络 双向长短期记忆循环神经网络 注意力机制
在线阅读 下载PDF
基于ECA-TCN的数据中心磁盘故障预测 被引量:1
9
作者 张铭泉 王宝兴 《智能系统学报》 北大核心 2025年第2期389-399,共11页
随着数据中心规模的不断扩大,磁盘故障对数据中心的运行稳定性产生越来越大的影响。当前预测方法在面对大规模、高维度和长序列的磁盘运行数据时仍存在不足。本文提出了一种高效通道注意力时间卷积网络(efficient channel attention-tem... 随着数据中心规模的不断扩大,磁盘故障对数据中心的运行稳定性产生越来越大的影响。当前预测方法在面对大规模、高维度和长序列的磁盘运行数据时仍存在不足。本文提出了一种高效通道注意力时间卷积网络(efficient channel attention-temporal convolutional network,ECA-TCN)模型,通过结合传统卷积神经网络一维卷积的优势,融入扩张卷积和残差结构,并引入注意力机制,该模型能够提高磁盘故障预测的准确性和稳定性。在实验中,将ECA-TCN模型与其他经典深度学习方法进行了比较,实验结果表明,ECA-TCN模型在磁盘故障预测任务上具有较高的准确性和稳定性。 展开更多
关键词 磁盘故障预测 长短时记忆网络 循环神经网络 扩张卷积 高效通道注意力机制 神经网络模型 时间序列预测 深度学习优化
在线阅读 下载PDF
蜉蝣优化双通道网络在齿轮箱故障诊断中的应用
10
作者 于宁 魏沉潜 +2 位作者 田立勇 赵建军 于晓涵 《西安交通大学学报》 北大核心 2025年第5期217-228,共12页
为了有效提取齿轮箱中齿轮和滚动轴承的故障信号特征,并克服深度学习模型超参数选取依赖人工经验的局限性,提高故障诊断的准确性和稳定性,提出了一种基于蜉蝣算法(MA)优化的双通道神经网络故障诊断模型。该模型采用一维时序输入的门控... 为了有效提取齿轮箱中齿轮和滚动轴承的故障信号特征,并克服深度学习模型超参数选取依赖人工经验的局限性,提高故障诊断的准确性和稳定性,提出了一种基于蜉蝣算法(MA)优化的双通道神经网络故障诊断模型。该模型采用一维时序输入的门控循环单元(GRU)和二维图像输入的卷积神经网络(CNN)构建双通道并行架构,并引入自适应批标准化(AdaBN)算法。利用MA的全局优化能力,以CNN-GRU的诊断精度为优化目标,自适应调整模型超参数。将蜉蝣算法优化效果与粒子群算法和遗传算法进行了对比验证,以评估其在模型参数优化方面的有效性。基于东南大学齿轮箱数据集和凯斯西储大学轴承数据集的实验结果表明:该模型能够有效提取振动信号特征,其故障识别精度与稳定性均优于典型深度学习模型,并展现出较强的鲁棒性。在稳态工况下,优化后的CNN-GRU(MA-CNN-GRU)模型在各数据集上的识别精度显著提高;在噪声工况下,MA优化的CNN-GRU模型表现出优异的抗噪性;在变负载工况下,结合AdaBN算法的MA-CNN-GRU模型实现了最高的平均识别精度。所提模型能够高效、准确地检测齿轮箱故障,为机械设备的维护和稳定运行提供了重要的参考价值。 展开更多
关键词 故障诊断 齿轮箱 门控循环单元 卷积神经网络 蜉蝣算法
在线阅读 下载PDF
基于WOA-CNN-BiGRU的PEMFC性能衰退预测
11
作者 陈贵升 刘强 许杨松 《电源技术》 北大核心 2025年第4期831-840,共10页
针对PEMFC性能预测领域中存在的预测精度不足和泛化能力有限的问题,提出了一种结合鲸鱼优化算法(WOA)、卷积神经网络(CNN)和双向门控循环单元(BiGRU)的PEMFC输出性能预测方法。首先,采用最大信息系数从大量数据中提取对PEMFC输出性能影... 针对PEMFC性能预测领域中存在的预测精度不足和泛化能力有限的问题,提出了一种结合鲸鱼优化算法(WOA)、卷积神经网络(CNN)和双向门控循环单元(BiGRU)的PEMFC输出性能预测方法。首先,采用最大信息系数从大量数据中提取对PEMFC输出性能影响显著的特征,以降低计算复杂度。然后,结合CNN的特征提取能力和BiGRU在处理双向时间依赖性数据上的优势建立CNNBiGRU模型,并通过WOA优化其超参数进一步提升预测的准确性。最后,与传统预测模型进行对比,验证所建模型的优越性。实验结果表明:在训练集占比为60%时,模型在三种不同工况PEMFC老化数据集上的RMSE分别为0.0017、0.0014和0.0110,证明CNN-BiGRU模型具有较高的预测精度以及良好的泛化能力。 展开更多
关键词 PEMFC 性能衰退 鲸鱼优化算法 卷积神经网络 双向门控循环单元
在线阅读 下载PDF
基于等压能量分析与CNN-GRU-MHA的锂电池SOH估计方法
12
作者 汪晓璐 赵筛筛 张朝龙 《电气工程学报》 北大核心 2025年第3期233-241,共9页
精确有效的锂电池健康状态(State of health,SOH)估计方法是电池管理系统的研发重点。针对实测噪声导致难以准确估计锂电池SOH的问题,提出一种基于等压能量分析与卷积神经网络(Convolutional neural network,CNN)-门控循环单元(Gated re... 精确有效的锂电池健康状态(State of health,SOH)估计方法是电池管理系统的研发重点。针对实测噪声导致难以准确估计锂电池SOH的问题,提出一种基于等压能量分析与卷积神经网络(Convolutional neural network,CNN)-门控循环单元(Gated recurrent unit,GRU)-多头注意力机制(Multi-headed attention,MHA)的锂电池SOH估计方法。首先,分析恒流充电阶段电池能量与电压关系,绘制等压能量曲线;其次,提取等压能量曲线的峰值作为健康因子,表征锂电池SOH退化特性;最后,采用CNN提取健康因子深层特征,构建基于GRU-MHA方法的锂电池SOH估计模型。试验结果表明,所提方法能够有效克服实测噪声,SOH估计误差小于1%。同时,比较试验表明,所提方法具有更好的估计效果。 展开更多
关键词 锂电池 SOH估计 等压能量分析 卷积神经网络 门控循环单元
在线阅读 下载PDF
基于多尺度融合神经网络的同频同调制单通道盲源分离算法
13
作者 付卫红 张鑫钰 刘乃安 《系统工程与电子技术》 北大核心 2025年第2期641-649,共9页
针对单通道条件下同频同调制混合信号分离时存在的计算复杂度高、分离效果差等问题,提出一种基于时域卷积的多尺度融合递归卷积神经网络(recursive convolutional neural network, RCNN),采用编码、分离、解码结构实现单通道盲源分离。... 针对单通道条件下同频同调制混合信号分离时存在的计算复杂度高、分离效果差等问题,提出一种基于时域卷积的多尺度融合递归卷积神经网络(recursive convolutional neural network, RCNN),采用编码、分离、解码结构实现单通道盲源分离。首先,编码模块提取出混合通信信号的编码特征;然后,分离模块采用不同尺度大小的卷积块以进一步提取信号的特征信息,再利用1×1卷积块捕获信号的局部和全局信息,估计出每个源信号的掩码;最后,解码模块利用掩码与混合信号的编码特征恢复源信号波形。仿真结果表明,所提多尺度融合RCNN不仅可以分离出仅有少量参数区别的混合通信信号,而且相较于U型网络(U-Net)降低了约62%的参数量和41%的计算量,同时网络也具有较强的泛化能力,可以高效面对复杂通信环境的挑战。 展开更多
关键词 单通道盲源分离 深度学习 同频同调制信号分离 多尺度融合递归卷积神经网络 通信信号处理
在线阅读 下载PDF
基于MSCNN-BiGRU-Attention的短期电力负荷预测
14
作者 李科 潘庭龙 许德智 《中国电力》 北大核心 2025年第6期10-18,共9页
为解决电力负荷关键特征难以提取的问题,提出一种结合多尺度卷积神经网络-双向门控循环单元-注意力机制(multi-scale convolutional neural network-bi-directional gated recurrent unit-Attention,MSCNN-BiGRU-Attention)的组合模型... 为解决电力负荷关键特征难以提取的问题,提出一种结合多尺度卷积神经网络-双向门控循环单元-注意力机制(multi-scale convolutional neural network-bi-directional gated recurrent unit-Attention,MSCNN-BiGRU-Attention)的组合模型进行短期电力负荷预测。首先,通过Spearman相关系数分析电力负荷数据集的相关性,筛选出相关性较高的特征,构建电力负荷数据集;其次,将数据输入到多尺度卷积神经网络(multi-scale convolutional neural network,MSCNN),对电力负荷数据进行多尺度的时序提取;然后,将提取后的时序特征输入到双向门控循环单元(bi-directional gated recurrent unit,BiGRU)神经网络进行时序预测,并通过注意力(Attention)机制对时序特征进行过滤和筛选;最后,通过全连接层整合输出预测值。以澳大利亚某地区3年的多维电力负荷数据作为数据集,并设置5种对照组模型。同时选用国内南方某地区2年的多维电力负荷数据作为模型验证数据集。结果表明,相较其他模型,MSCNN-BiGRU-Attention组合模型能够取得更好的预测效果,有效解决区域级电力负荷关键特征难以提取的问题。 展开更多
关键词 电力负荷预测 多尺度卷积神经网络 双向门控循环单元 注意力机制 深度学习 Spearman相关系数
在线阅读 下载PDF
基于深度学习的矿井瓦斯浓度预测算法研究与实现
15
作者 王宝会 高瞻 +1 位作者 徐林 谭英洁 《计算机科学》 北大核心 2025年第S1期614-620,共7页
目前国内外构建瓦斯浓度传统预测算法主要是ARIMA模型和SVM模型。随着深度学习技术的快速发展以及神经网络的兴起,最新的瓦斯浓度预测通过循环神经网络模型进行预测。循环神经网络因为具有非线性特点,并且考虑到了数据间的联系,所以预... 目前国内外构建瓦斯浓度传统预测算法主要是ARIMA模型和SVM模型。随着深度学习技术的快速发展以及神经网络的兴起,最新的瓦斯浓度预测通过循环神经网络模型进行预测。循环神经网络因为具有非线性特点,并且考虑到了数据间的联系,所以预测效果相比传统预测算法有了进一步提升。而当样本序列长度加长时,由于其模型固有缺陷,预测能力会降低。文中针对此问题提出了一种新型的瓦斯浓度预测模型。卷积神经网络结合循环神经网络的方式,并且加入注意力机制增加数据间的表达能力。通过使用山西汾西矿业集团中兴煤业1209工作面的实际数据进行测试,传统的循环神经网络模型预测的平均相对误差为0.042 1,所提模型预测的平均相对误差为0.029 3。实验表明提出的算法相比瓦斯浓度传统预测算法获得了更好的预测性能。 展开更多
关键词 瓦斯浓度预测 深度学习 卷积神经网络 循环神经网络 Attention机制 LSTM
在线阅读 下载PDF
基于GASF多通道图像时序融合的高速列车横向减振器故障诊断
16
作者 李刚 秦永峰 齐金平 《振动与冲击》 北大核心 2025年第15期144-152,191,共10页
由于高速列车在运行的过程中悬挂系统产生的振动信号是典型的复杂度高,耦合性和不确定性强的非线性信号,为弥补一维信号在故障诊断时的局限性,利用格拉姆角场(Gramian angular field,GAF)处理时间序列信号的敏感性以及对非线性信号的适... 由于高速列车在运行的过程中悬挂系统产生的振动信号是典型的复杂度高,耦合性和不确定性强的非线性信号,为弥补一维信号在故障诊断时的局限性,利用格拉姆角场(Gramian angular field,GAF)处理时间序列信号的敏感性以及对非线性信号的适应性,提出了一种基于一维(1D)时序信号和二维(2D)格拉姆角和场(Gramian angular summation field,GASF)特征融合的卷积神经网络结合门控循环单元网络融合多头自注意力机制(1D-2D-CNN-GRU-MSA)的故障诊断方法。首先,将一维的时序信号编码为二维的GASF图,再分别将一维的时序信号与二维的GASF图同时送入到两条并行的网络支路中,其中:一路为图像输入经卷积神经网络(convolutional neural networks,CNN)提取GASF图像的特征;另一路将一维的故障波形直接输入经门控循环网络单元(gated recurrent unit,GRU)提取时序特征,通过多头自注意力机制(multi-head self-attention,MSA)将二维图像特征和一维时序特征进行特征重点强化并降维融合,最后通过Softmax层对高速列车横向减振器故障进行分类。仿真试验证明,不同工况下1D-2D-CNN-GRU-MSA模型比两种主流模型进行高速列车横向减振器故障识别的准确率高。 展开更多
关键词 高速列车 格拉姆角和场(GASF) 卷积神经网络(CNN) 多头自注意力机制(MSA) 门控循环单元(GRU)
在线阅读 下载PDF
基于时空动态图的交通流量预测方法研究
17
作者 孟祥福 谢伟鹏 崔江燕 《智能系统学报》 北大核心 2025年第4期776-786,共11页
为改进现有交通流量预测方法在建模时空数据和捕捉动态空间相关性方面的不足,提出了一种时空动态图卷积网络(spatio-temporal dynamic graph network,STDGNet)。该模型采用带嵌入层的编码器–解码器架构,通过动态图生成模块从数据驱动... 为改进现有交通流量预测方法在建模时空数据和捕捉动态空间相关性方面的不足,提出了一种时空动态图卷积网络(spatio-temporal dynamic graph network,STDGNet)。该模型采用带嵌入层的编码器–解码器架构,通过动态图生成模块从数据驱动的角度挖掘潜在的时空关系,并重构每个时间步的节点动态关联图。嵌入层使用时空自适应嵌入方法建模交通数据的内在时空关系和时间信息;编码器部分利用时空记忆注意力机制,从全局视角对时空特征进行建模;解码器部分将图卷积模块注入循环神经网络中,以同时捕捉时间和空间依赖关系,并输出未来流量情况。实验结果表明,所提模型与最优基线模型解耦动态时空图神经网络(decoupled dynamic spatial-temporal graph neural network,D2STGNN)相比,平均绝对误差降低了1.63%,模型训练时间缩短了近2.5倍。本研究有效提升了交通流量预测的准确性与效率,为智能交通系统的建设提供了有力支撑。 展开更多
关键词 交通流量 时空数据 混合模型 注意力机制 时空动态图 图卷积神经网络 循环神经网络 深度学习
在线阅读 下载PDF
具有注意力机制的CNN-GRU模型在风电机组异常状态预警中的应用
18
作者 马良玉 胡景琛 +1 位作者 段晓冲 黄日灏 《南京信息工程大学学报》 北大核心 2025年第3期374-383,共10页
针对风电机组长期在恶劣环境中工作导致故障频发的问题,提出一种具有注意力机制的卷积神经网络(CNN)及门控循环单元(GRU)的异常工况预警方法.利用快速密度峰值聚类和局部离群因子算法对风电机组数据采集与监控系统中的异常数据进行清洗... 针对风电机组长期在恶劣环境中工作导致故障频发的问题,提出一种具有注意力机制的卷积神经网络(CNN)及门控循环单元(GRU)的异常工况预警方法.利用快速密度峰值聚类和局部离群因子算法对风电机组数据采集与监控系统中的异常数据进行清洗,结合机理分析及极端梯度提升(XGBoost)算法对特征重要性的评估确定模型的输入输出参数,进而采用具有注意力机制的CNN-GRU模型建立风电机组正常运行工况的性能预测模型.以该预测模型为基础,利用时移滑动窗口构建风电机组状态评价指标,并结合统计学中的区间估计法确定预警阈值,最终实现机组异常工况预警.应用某风电机组真实历史故障数据进行实验,结果表明,本文所提方法能够准确地对异常状态进行提前识别和预警,有利于运维人员及时处理故障,保证机组安全稳定运行. 展开更多
关键词 风电机组 卷积神经网络 门控循环单元 注意力机制 故障预警
在线阅读 下载PDF
基于自适应卷积和加权损失的浪高预测模型
19
作者 郑宗生 赵泽骋 +1 位作者 张月维 王绪龙 《海洋测绘》 北大核心 2025年第2期47-51,共5页
有效波高(significant wave heights,SWH)是海浪运动的重要参数,准确的波高预测对于海上安全有重要意义。针对当前深度学习方法难以有效提取波浪场的多尺度特征,以及深度学习数据集中的浪高样本等级分布不平衡问题,提出一种区域浪高预... 有效波高(significant wave heights,SWH)是海浪运动的重要参数,准确的波高预测对于海上安全有重要意义。针对当前深度学习方法难以有效提取波浪场的多尺度特征,以及深度学习数据集中的浪高样本等级分布不平衡问题,提出一种区域浪高预测模型AC-LSTM(adaptive convlution LSTM)。该方法使用自适应卷积(Adaptive Convlution)提取波浪场的局部和全局特征,选择性地融合多尺度特征;使用考虑浪高等级的加权损失函数,缓解浪高数据中的类别不平衡问题。提出的模型在南海再分析数据集上进行实验,模型12 h的MAE、RMSE分别为0.152 m、0.223 m,表现优于流行的时空预测模型,可以有效进行区域浪高预测。 展开更多
关键词 有效波高预测 循环神经网络 自适应卷积 加权损失函数 多尺度
在线阅读 下载PDF
融合CNN-GRU和Transformer的网络入侵检测方法
20
作者 黄迎春 邢秀祺 《火力与指挥控制》 北大核心 2025年第6期21-27,共7页
随着网络技术的快速发展及其在军事领域的广泛应用,入侵检测技术对系统安全起着重要作用。针对传统入侵检测数据集类别不平衡问题,提出一种融合卷积门控循环单元(CNN-GRU)和基于自注意力机制的神经网络模型(Transformer)的网络入侵检测... 随着网络技术的快速发展及其在军事领域的广泛应用,入侵检测技术对系统安全起着重要作用。针对传统入侵检测数据集类别不平衡问题,提出一种融合卷积门控循环单元(CNN-GRU)和基于自注意力机制的神经网络模型(Transformer)的网络入侵检测方法CGT(CNN-GRU Transformer),该方法针对双向长短期记忆网络(LSTM)只考虑时序特征而忽略空间特征且参数较多的特点优化入侵检测技术,融合过-欠采样与Wasserstein生成对抗网络的数据平衡处理模型NBW(Neighbourhood-cleaning-rule borderline-SMOTE WGAN)对数据集进行平衡处理。实验结果证明,所提出的方法在NSL-KDD数据集上表现出较好的效果,有效提升了入侵检测性能。 展开更多
关键词 入侵检测 卷积门控循环单元 数据平衡处理 领域清理规则 神经网络
在线阅读 下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部