A method based on newly presented state space formulations is developed for analyzing the bending, vibration and stability of laminated transversely isotropic rectangular plates with simply supported edges. By introdu...A method based on newly presented state space formulations is developed for analyzing the bending, vibration and stability of laminated transversely isotropic rectangular plates with simply supported edges. By introducing two displacement functions and two stress functions, two independent state equations were constructed based on the three_dimensional elasticity equations for transverse isotropy. The original differential equations are thus decoupled with the order reduced that will facilitate obtaining solutions of various problems. For the simply supported rectangular plate, two relations between the state variables at the top and bottom surfaces were established. In particular, for the free vibration (stability) problem, it is found that there exist two independent classes: One corresponds to the pure in_plane vibration (stability) and the other to the general bending vibration (stability). Numerical examples are finally presented and the effects of some parameters are discussed.展开更多
Based on the theory of composite materials and phononic crystals(PCs),a large-size rectangular piezoelectric composite plate with the quasi-periodic PC structure composed of PZT-4 and epoxy is proposed in this paper.T...Based on the theory of composite materials and phononic crystals(PCs),a large-size rectangular piezoelectric composite plate with the quasi-periodic PC structure composed of PZT-4 and epoxy is proposed in this paper.This PC structure can suppress the transverse vibration of the piezoelectric composite plate so that the thickness mode is purer and the thickness vibration amplitude is more uniform.Firstly,the vibration of the model is analyzed theoretically,the electromechanical equivalent circuit diagram of three-dimensional coupled vibration is established,and the resonance frequency equation is derived.The effects of the length,width,and thickness of the piezoelectric composite plate at the resonant frequency are obtained by the analytical method and the finite element method,the effective electromechanical coupling coefficient is also analyzed.The results show that the resonant frequency can be changed regularly and the electromechanical conversion can be improved by adjusting the size of the rectangular piezoelectric plate.The effect of the volume fraction of the scatterer on the resonant frequency in the thickness direction is studied by the finite element method.The band gap in X and Y directions of large-size rectangular piezoelectric plate with quasi-periodic PC structures are calculated.The results show that the theoretical results are in good agreement with the simulation results.When the resonance frequency is in the band gap,the decoupling phenomenon occurs,and then the vibration mode in the thickness direction is purer.展开更多
运用辛叠加方法求出相邻两边固支其他两边自由(two adjacent edges clamped and the other edges free, CCFF)正交各向异性矩形薄板屈曲问题的级数展开解。首先,将原屈曲问题的控制方程转化为哈密顿系统,通过分析边界条件,将原屈曲问题...运用辛叠加方法求出相邻两边固支其他两边自由(two adjacent edges clamped and the other edges free, CCFF)正交各向异性矩形薄板屈曲问题的级数展开解。首先,将原屈曲问题的控制方程转化为哈密顿系统,通过分析边界条件,将原屈曲问题分解为两个子屈曲问题,再利用辛本征函数展开法分别求得两个子屈曲问题的通解;然后,利用叠加方法得到原屈曲问题的辛叠加解;最后,应用所得辛叠加解分别计算了单/双向载荷作用下的CCFF各向同性和正交各向异性矩形薄板的屈曲问题。计算结果表明,所得辛叠加解是正确的并且其收敛速度较快。展开更多
文摘A method based on newly presented state space formulations is developed for analyzing the bending, vibration and stability of laminated transversely isotropic rectangular plates with simply supported edges. By introducing two displacement functions and two stress functions, two independent state equations were constructed based on the three_dimensional elasticity equations for transverse isotropy. The original differential equations are thus decoupled with the order reduced that will facilitate obtaining solutions of various problems. For the simply supported rectangular plate, two relations between the state variables at the top and bottom surfaces were established. In particular, for the free vibration (stability) problem, it is found that there exist two independent classes: One corresponds to the pure in_plane vibration (stability) and the other to the general bending vibration (stability). Numerical examples are finally presented and the effects of some parameters are discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11674206,11874253,and12174240)the Fundamental Research Funds for the Central Universities,China(Grant No.020CBLY003)。
文摘Based on the theory of composite materials and phononic crystals(PCs),a large-size rectangular piezoelectric composite plate with the quasi-periodic PC structure composed of PZT-4 and epoxy is proposed in this paper.This PC structure can suppress the transverse vibration of the piezoelectric composite plate so that the thickness mode is purer and the thickness vibration amplitude is more uniform.Firstly,the vibration of the model is analyzed theoretically,the electromechanical equivalent circuit diagram of three-dimensional coupled vibration is established,and the resonance frequency equation is derived.The effects of the length,width,and thickness of the piezoelectric composite plate at the resonant frequency are obtained by the analytical method and the finite element method,the effective electromechanical coupling coefficient is also analyzed.The results show that the resonant frequency can be changed regularly and the electromechanical conversion can be improved by adjusting the size of the rectangular piezoelectric plate.The effect of the volume fraction of the scatterer on the resonant frequency in the thickness direction is studied by the finite element method.The band gap in X and Y directions of large-size rectangular piezoelectric plate with quasi-periodic PC structures are calculated.The results show that the theoretical results are in good agreement with the simulation results.When the resonance frequency is in the band gap,the decoupling phenomenon occurs,and then the vibration mode in the thickness direction is purer.
文摘运用辛叠加方法求出相邻两边固支其他两边自由(two adjacent edges clamped and the other edges free, CCFF)正交各向异性矩形薄板屈曲问题的级数展开解。首先,将原屈曲问题的控制方程转化为哈密顿系统,通过分析边界条件,将原屈曲问题分解为两个子屈曲问题,再利用辛本征函数展开法分别求得两个子屈曲问题的通解;然后,利用叠加方法得到原屈曲问题的辛叠加解;最后,应用所得辛叠加解分别计算了单/双向载荷作用下的CCFF各向同性和正交各向异性矩形薄板的屈曲问题。计算结果表明,所得辛叠加解是正确的并且其收敛速度较快。