钻井顶部驱动装置结构复杂、故障类型多样,现有的故障树分析法和专家系统难以有效应对复杂多变的现场情况。为此,利用知识图谱在结构化与非结构化信息融合、故障模式关联分析以及先验知识传递方面的优势,提出了一种基于知识图谱的钻井...钻井顶部驱动装置结构复杂、故障类型多样,现有的故障树分析法和专家系统难以有效应对复杂多变的现场情况。为此,利用知识图谱在结构化与非结构化信息融合、故障模式关联分析以及先验知识传递方面的优势,提出了一种基于知识图谱的钻井顶部驱动装置故障诊断方法,利用以Transformer为基础的双向编码器模型(Bidirectional Encoder Representations from Transformers,BERT)构建了混合神经网络模型BERT-BiLSTM-CRF与BERT-BiLSTM-Attention,分别实现了顶驱故障文本数据的命名实体识别和关系抽取,并通过相似度计算,实现了故障知识的有效融合和智能问答,最终构建了顶部驱动装置故障诊断方法。研究结果表明:①在故障实体识别任务上,BERT-BiLSTM-CRF模型的精确度达到95.49%,能够有效识别故障文本中的信息实体;②在故障关系抽取上,BERT-BiLSTM-Attention模型的精确度达到93.61%,实现了知识图谱关系边的正确建立;③开发的问答系统实现了知识图谱的智能应用,其在多个不同类型问题上的回答准确率超过了90%,能够满足现场使用需求。结论认为,基于知识图谱的故障诊断方法能够有效利用顶部驱动装置的先验知识,实现故障的快速定位与智能诊断,具备良好的应用前景。展开更多
目的训练多种机器学习模型用于听性脑干反应(auditory brainstem response,ABR)波形的自动识别,并确定准确率最高的模型,使ABR自动识别技术更好地应用于临床实践。方法选取2021年6月至2022年6月北京清华长庚医院收治的100例听力正常和...目的训练多种机器学习模型用于听性脑干反应(auditory brainstem response,ABR)波形的自动识别,并确定准确率最高的模型,使ABR自动识别技术更好地应用于临床实践。方法选取2021年6月至2022年6月北京清华长庚医院收治的100例听力正常和伴有听力损伤人群的受试者(200耳)为研究对象,根据年龄和听力水平将受试者分为组1(年龄18~59岁,500、1000、2000、4000 Hz频率平均听阈≤25 dB HL)、组2(年龄≥60岁,500、1000、2000、4000 Hz频率平均听阈≤25 dB HL)、组3(年龄18~59岁,500、1000、2000、4000 Hz频率平均听阈>25 dB HL)、组4(年龄≥60岁,500、1000、2000、4000 Hz频率平均听阈>25 dB HL),每组25例。收集受试者纯音测听和ABR数据,提取ABR信号时域和频域特征,与受试者年龄、性别、纯音听阈,刺激声强度以及原始信号序列拼接得到特征向量。分别使用逻辑回归、支持向量机分类、伯努利朴素贝叶斯分类、高斯朴素贝叶斯分类、高斯过程分类、决策树、随机森林、表格网络、轻量化梯度提升框架、极致梯度提升框架和局部级联集成。等机器学习模型对ABR波形进行识别训练,并对整体数据和分组数据分别计算不同模型下波形识别的准确率。结果高斯过程分类模型的整体准确率达到了94.89%,超过了其他机器学习模型。其中95.62%为<60岁听力正常受试者、92.19%为≥60岁听力正常受试者、92.92%为<60岁伴有听力损失受试者、92.50%为≥60岁且伴有听力损失受试者。结论机器学习技术在ABR波形的自动识别方面具有良好的应用前景,高斯过程分类模型优于其他机器学习模型。展开更多
文摘钻井顶部驱动装置结构复杂、故障类型多样,现有的故障树分析法和专家系统难以有效应对复杂多变的现场情况。为此,利用知识图谱在结构化与非结构化信息融合、故障模式关联分析以及先验知识传递方面的优势,提出了一种基于知识图谱的钻井顶部驱动装置故障诊断方法,利用以Transformer为基础的双向编码器模型(Bidirectional Encoder Representations from Transformers,BERT)构建了混合神经网络模型BERT-BiLSTM-CRF与BERT-BiLSTM-Attention,分别实现了顶驱故障文本数据的命名实体识别和关系抽取,并通过相似度计算,实现了故障知识的有效融合和智能问答,最终构建了顶部驱动装置故障诊断方法。研究结果表明:①在故障实体识别任务上,BERT-BiLSTM-CRF模型的精确度达到95.49%,能够有效识别故障文本中的信息实体;②在故障关系抽取上,BERT-BiLSTM-Attention模型的精确度达到93.61%,实现了知识图谱关系边的正确建立;③开发的问答系统实现了知识图谱的智能应用,其在多个不同类型问题上的回答准确率超过了90%,能够满足现场使用需求。结论认为,基于知识图谱的故障诊断方法能够有效利用顶部驱动装置的先验知识,实现故障的快速定位与智能诊断,具备良好的应用前景。
文摘目的训练多种机器学习模型用于听性脑干反应(auditory brainstem response,ABR)波形的自动识别,并确定准确率最高的模型,使ABR自动识别技术更好地应用于临床实践。方法选取2021年6月至2022年6月北京清华长庚医院收治的100例听力正常和伴有听力损伤人群的受试者(200耳)为研究对象,根据年龄和听力水平将受试者分为组1(年龄18~59岁,500、1000、2000、4000 Hz频率平均听阈≤25 dB HL)、组2(年龄≥60岁,500、1000、2000、4000 Hz频率平均听阈≤25 dB HL)、组3(年龄18~59岁,500、1000、2000、4000 Hz频率平均听阈>25 dB HL)、组4(年龄≥60岁,500、1000、2000、4000 Hz频率平均听阈>25 dB HL),每组25例。收集受试者纯音测听和ABR数据,提取ABR信号时域和频域特征,与受试者年龄、性别、纯音听阈,刺激声强度以及原始信号序列拼接得到特征向量。分别使用逻辑回归、支持向量机分类、伯努利朴素贝叶斯分类、高斯朴素贝叶斯分类、高斯过程分类、决策树、随机森林、表格网络、轻量化梯度提升框架、极致梯度提升框架和局部级联集成。等机器学习模型对ABR波形进行识别训练,并对整体数据和分组数据分别计算不同模型下波形识别的准确率。结果高斯过程分类模型的整体准确率达到了94.89%,超过了其他机器学习模型。其中95.62%为<60岁听力正常受试者、92.19%为≥60岁听力正常受试者、92.92%为<60岁伴有听力损失受试者、92.50%为≥60岁且伴有听力损失受试者。结论机器学习技术在ABR波形的自动识别方面具有良好的应用前景,高斯过程分类模型优于其他机器学习模型。