A pre-reduction sintering process with flue gas recirculation(PSP_(fsg)-FGR)was developed to mitigate alkalis harm to the blast furnace and reduce the flue gas emission in the whole ironmaking process.The results indi...A pre-reduction sintering process with flue gas recirculation(PSP_(fsg)-FGR)was developed to mitigate alkalis harm to the blast furnace and reduce the flue gas emission in the whole ironmaking process.The results indicated that the pre-reduction sintering process(PSP)can effectively remove 58.02%of K and 30.68%of Na from raw mixtures and improve yield and tumbler index to 74.40%and 68.69%,respectively.Moreover,PSP was conducive to reducing NO_(x) and SO_(2)emissions and simultaneously increasing CO content in flue gas.Circulating CO-containing flue gas to sintering bed effectively recycled CO and further improved K and Na removal ratio to 74.11%and 32.92%,respectively.Microstructural analysis revealed that the pre-reduced sinter mainly consisted of magnetite,wustite and a small quantity of metallic iron,and very few silicate glass phase was also formed.This process can simultaneously realize alkali metal elements removal as well as flue gas emission reduction from the integrated ironmaking process.展开更多
The properties of circulating gas have a significant effect on sintering with flue gas recirculation,and the influence of CO in sintering process was investigated.The results show that the post-combustion of CO conduc...The properties of circulating gas have a significant effect on sintering with flue gas recirculation,and the influence of CO in sintering process was investigated.The results show that the post-combustion of CO conducts in sinter zone when flue gas passes through the sintering bed,which releases much heat and reduces the consumption of solid fuel.The ratio of coke breeze can be reduced from 5% to 4.7% with 2% CO in circulating flue gas.In addition,with the increase of CO content in circulating flue gas,the combustion efficiency of fuel is improved,and the flame front is increased slightly while still matches with the heat transfer front.These are beneficial to increasing the maximum temperature and prolonging the high temperature duration,especially in the upper layer of sintering bed.As a consequence,the productivity,vertical sintering velocity and quality of sinter are improved.展开更多
Achieving simultaneous reduction of NOx,CO and unburned hydrocarbon(UHC) emissions without compromising engine performance at part loads is the current focus of dual fuel engine research.The present work focuses on an...Achieving simultaneous reduction of NOx,CO and unburned hydrocarbon(UHC) emissions without compromising engine performance at part loads is the current focus of dual fuel engine research.The present work focuses on an experimental investigation conducted on a dual fuel(diesel-natural gas) engine to examine the simultaneous effect of inlet air pre-heating and exhaust gas recirculation(EGR) ratio on performance and emission characteristics at part loads.The use of EGR at high levels seems to be unable to improve the engine performance at part loads.However,it is shown that EGR combined with pre-heating of inlet air can slightly increase thermal efficiency,resulting in reduced levels of both unburned hydrocarbon and NOx emissions.CO and UHC emissions are reduced by 24% and 31%,respectively,The NOx emissions decrease by 21% because of the lower combustion temperature due to the much inert gas brought by EGR and decreased oxygen concentration in the cylinder.展开更多
To meet increasingly stringent emission standards and lower the brake-specific fuel consumption(BSFC)of marine engines,a collaborative optimization study of exhaust gas recirculation(EGR)and a Miller cycle coupled tur...To meet increasingly stringent emission standards and lower the brake-specific fuel consumption(BSFC)of marine engines,a collaborative optimization study of exhaust gas recirculation(EGR)and a Miller cycle coupled turbocharging system was carried out.In this study,a one-dimensional numerical model of the EGR,Miller cycle,and adjustable two-stage turbocharged engine based on WeiChai 6170 marine diesel engine was established.The particle swarm optimization algorithm was used to achieve multi-input and multi-objective comprehensive optimization,and the effects of EGR-coupled Miller regulation and high-pressure turbine bypass regulation on NO_(x)and BSFC were investigated.The results showed that a medium EGR rate-coupled medium Miller degree was better for the comprehensive optimization of NO_(x)and BSFC.At medium EGR rate and low turbine bypass rates,NO_(x)and BSFC were relatively balanced and acceptable.Finally,an optimal steady-state control strategy under full loads was proposed.With an increase in loads,the optimized turbine bypass rate and Miller degree gradually increased.Compared with the EGRonly system,the optimal system of EGR and Miller cycle coupled turbine bypass reduced NO_(x)by 0.87 g/(kW·h)and BSFC by 17.19 g/(kW·h)at 100%load.Therefore,the EGR and Miller cycle coupled adjustable two-stage turbocharging achieves NO_(x)and BSFC optimization under full loads.展开更多
Oxygen fuels have broad application prospects and great potential for realizing efficient and clean combustion,and hence this study applies diesel/n-butanol blends to explore the influence of split-injection strategy ...Oxygen fuels have broad application prospects and great potential for realizing efficient and clean combustion,and hence this study applies diesel/n-butanol blends to explore the influence of split-injection strategy on combustion and emission characteristics.Simultaneously,changing the way of exhaust gas recirculation(EGR)gas introduction forms uneven in-cylinder components distribution,and utilizing EGR stratification optimizes the combustion process and allows better emission results.The results show that the split-injection strategy can reduce the NO_(x)emissions and keep smoke opacity low compared with the single injection,but the rise in accumulation mode particles is noticeable.NO_(x)emissions show an upward trend as the injection interval expands,while soot emissions are significantly reduced.The increase in pre-injection proportion causes the apparent low-temperature heat release,and the two-stage heat release can be observed during the process of main combustion heat release.More pre-injection mass makes NO_(x)gradually increase,but smoke opacity reaches the lowest point at 15%pre-injection proportion.EGR stratification can optimize the emission results under the split injection strategy,especially the considerable suppression of accumulation mode particulate emissions.Above all,fuel stratification coupled with EGR stratification is beneficial for further realizing the in-cylinder purification of pollutants.展开更多
It is of great significance for cleaner production to substitute bio-energy for fossil fuels in iron ore sintering. However, with the replacement ratio increasing, the consistency of heat front and flame front is brok...It is of great significance for cleaner production to substitute bio-energy for fossil fuels in iron ore sintering. However, with the replacement ratio increasing, the consistency of heat front and flame front is broken, and the thermal utilizing efficiency of fuel is reduced, which results in the decrease of yield and tumble index of sinter. Circulating flue gas to sintering bed as biochar replacing 40% coke, CO in flue gas can be reused so as to increase the thermal utilizing efficiency of fuels, and the consistency of two fronts is recovered for the circulating flue gas containing certain CO2, H2 O and lower O2, which contributes to increasing the maximum temperature, extending the high temperature duration time of sintering bed, and results in improving the output and quality of sinter. In the condition of circulating 40% flue gas, the sintering with biomass fuels is strengthened, and the sintering indexes with biomass fuel replacing 40% coke breeze are comparative to those of using coke breeze completely.展开更多
The effect of wall temperature on the characteristics of random combustion of micro organic particles with recirculation was investigated. The effect of recirculating in micro-combustors is noticeable, hence it is nec...The effect of wall temperature on the characteristics of random combustion of micro organic particles with recirculation was investigated. The effect of recirculating in micro-combustors is noticeable, hence it is necessary to present a model to describe the combustion process in these technologies. Recirculation phenomenon is evaluated by entering the exhausted heat from the post flam zone into the preheat zone. In this work, for modeling of random situation at the flame front, the source term in the equation of energy was modeled considering random situation for volatizing of particles in preheat zone. The comparison of obtained results from the proposed model by experimental data regards that the random model has a better agreement with experimental data than non-random model. Also, according to the results obtained by this model, wall temperature affects the amount of heat recirculation directly and higher values of wall temperature will lead to higher amounts of burning velocity and flame temperature.展开更多
Flame is prone to lose its stability in micro-combustors due to the large amount of heat loss from the external walls. On the other hand, heat recirculation through the upstream combustor walls can enhance flame stabi...Flame is prone to lose its stability in micro-combustors due to the large amount of heat loss from the external walls. On the other hand, heat recirculation through the upstream combustor walls can enhance flame stability. These two aspects depend on the structural heat transfer, which is associated with the thickness and thermal conductivity of the combustor walls. In the present study, the effects of wall thickness and material on flame stability were numerically investigated by selecting two thicknesses (δ=0.2 and 0.4 mm) and two materials (quartz and SiC). The results show that when δ=0.2 mm, flame inclination occurs at a certain inlet velocity in both combustors, but it happens later in SiC combustor. For δ=0.4 mm, flame inclination still occurs in quartz combustor from a larger inlet velocity compared to the case of δ=0.2 mm. However, flame inclination in SiC combustor with δ=0.4 mm does not happen and it has a much larger blowout limit. Analysis reveals that a thicker wall can enhance heat recirculation and reduce heat loss simultaneously. Moreover, SiC combustor has larger heat recirculation ratio and smaller heat loss ratio. In summary, the micro-combustor with thicker and more conductive walls can harvest large flame stability limit.展开更多
Based on the degradation characteristics of municipal solid waste(MSW)in China,the traditional anaerobic sequencing batch bioreactor landfill(ASBRL)was optimized,and an improved anaerobic sequencing batch bioreactor l...Based on the degradation characteristics of municipal solid waste(MSW)in China,the traditional anaerobic sequencing batch bioreactor landfill(ASBRL)was optimized,and an improved anaerobic sequencing batch bioreactor landfill(IASBRL)was put forward on the basis of leachate self-recirculation.By monitoring MSW composition,leachate characteristics variation and landfill gas(LFG)generation,the effect of IASBRL was comparatively studied by simulation landfill.Based on the adjusting,scouring and carrying effects of leachate self-recirculation,IASBRL can rapidly decrease Eh value to about-500mV and form a suitable biochemical environment for methanogens,which provides a precondition for stable cooperation between non-methanogens and methanogens.IASBRL can avoid the accumulation of organic acids,make VFA(volatile fatty acid)concentration and CODCr decrease along with the small range fluctuations,and form a stable decomposition-consumption synergy during MSW degradation,therefore,the hydrolysis rate of easy hydrolyze material reaches 71.2% in IASBRL.From the viewpoint of LFG resources in IASBRL,the cumulative LFG production increases to 2327.0L,CH4 mass fraction stabilizes at about 50%,and these provide a favorable precondition for LFG development.展开更多
基金Project(52274290)supported by the National Natural Science Foundation of ChinaProject(72088101)supported by the Basic Science Center Project for National Natural Science Foundation of China。
文摘A pre-reduction sintering process with flue gas recirculation(PSP_(fsg)-FGR)was developed to mitigate alkalis harm to the blast furnace and reduce the flue gas emission in the whole ironmaking process.The results indicated that the pre-reduction sintering process(PSP)can effectively remove 58.02%of K and 30.68%of Na from raw mixtures and improve yield and tumbler index to 74.40%and 68.69%,respectively.Moreover,PSP was conducive to reducing NO_(x) and SO_(2)emissions and simultaneously increasing CO content in flue gas.Circulating CO-containing flue gas to sintering bed effectively recycled CO and further improved K and Na removal ratio to 74.11%and 32.92%,respectively.Microstructural analysis revealed that the pre-reduced sinter mainly consisted of magnetite,wustite and a small quantity of metallic iron,and very few silicate glass phase was also formed.This process can simultaneously realize alkali metal elements removal as well as flue gas emission reduction from the integrated ironmaking process.
基金Projects(51174253,51304245)supported by the National Natural Science Foundation of ChinaProject(2013bjjxj015)supported by the Outstanding and Creative Doctor Scholarship of Central South University,ChinaProject supported by the Hunan Provincial Innovation Foundation for Postgraduate,China
文摘The properties of circulating gas have a significant effect on sintering with flue gas recirculation,and the influence of CO in sintering process was investigated.The results show that the post-combustion of CO conducts in sinter zone when flue gas passes through the sintering bed,which releases much heat and reduces the consumption of solid fuel.The ratio of coke breeze can be reduced from 5% to 4.7% with 2% CO in circulating flue gas.In addition,with the increase of CO content in circulating flue gas,the combustion efficiency of fuel is improved,and the flame front is increased slightly while still matches with the heat transfer front.These are beneficial to increasing the maximum temperature and prolonging the high temperature duration,especially in the upper layer of sintering bed.As a consequence,the productivity,vertical sintering velocity and quality of sinter are improved.
文摘Achieving simultaneous reduction of NOx,CO and unburned hydrocarbon(UHC) emissions without compromising engine performance at part loads is the current focus of dual fuel engine research.The present work focuses on an experimental investigation conducted on a dual fuel(diesel-natural gas) engine to examine the simultaneous effect of inlet air pre-heating and exhaust gas recirculation(EGR) ratio on performance and emission characteristics at part loads.The use of EGR at high levels seems to be unable to improve the engine performance at part loads.However,it is shown that EGR combined with pre-heating of inlet air can slightly increase thermal efficiency,resulting in reduced levels of both unburned hydrocarbon and NOx emissions.CO and UHC emissions are reduced by 24% and 31%,respectively,The NOx emissions decrease by 21% because of the lower combustion temperature due to the much inert gas brought by EGR and decreased oxygen concentration in the cylinder.
基金Project(K16011)supported by the Marine Low-speed Engine Project-Phase I,China。
文摘To meet increasingly stringent emission standards and lower the brake-specific fuel consumption(BSFC)of marine engines,a collaborative optimization study of exhaust gas recirculation(EGR)and a Miller cycle coupled turbocharging system was carried out.In this study,a one-dimensional numerical model of the EGR,Miller cycle,and adjustable two-stage turbocharged engine based on WeiChai 6170 marine diesel engine was established.The particle swarm optimization algorithm was used to achieve multi-input and multi-objective comprehensive optimization,and the effects of EGR-coupled Miller regulation and high-pressure turbine bypass regulation on NO_(x)and BSFC were investigated.The results showed that a medium EGR rate-coupled medium Miller degree was better for the comprehensive optimization of NO_(x)and BSFC.At medium EGR rate and low turbine bypass rates,NO_(x)and BSFC were relatively balanced and acceptable.Finally,an optimal steady-state control strategy under full loads was proposed.With an increase in loads,the optimized turbine bypass rate and Miller degree gradually increased.Compared with the EGRonly system,the optimal system of EGR and Miller cycle coupled turbine bypass reduced NO_(x)by 0.87 g/(kW·h)and BSFC by 17.19 g/(kW·h)at 100%load.Therefore,the EGR and Miller cycle coupled adjustable two-stage turbocharging achieves NO_(x)and BSFC optimization under full loads.
基金Projects(51476069,51676084)supported by the National Natural Science Foundation of ChinaProject(2019C058-3)supported by the Jilin Provincial Industrial Innovation Special Guidance Fund Project,China+1 种基金Project(20180101059JC)supported by the Jilin Provincial Science and Technology Development Plan Project,ChinaProject(2020C025-2)supported by the Jilin Provincial Specific Project of Industrial Technology Research&Development,China。
文摘Oxygen fuels have broad application prospects and great potential for realizing efficient and clean combustion,and hence this study applies diesel/n-butanol blends to explore the influence of split-injection strategy on combustion and emission characteristics.Simultaneously,changing the way of exhaust gas recirculation(EGR)gas introduction forms uneven in-cylinder components distribution,and utilizing EGR stratification optimizes the combustion process and allows better emission results.The results show that the split-injection strategy can reduce the NO_(x)emissions and keep smoke opacity low compared with the single injection,but the rise in accumulation mode particles is noticeable.NO_(x)emissions show an upward trend as the injection interval expands,while soot emissions are significantly reduced.The increase in pre-injection proportion causes the apparent low-temperature heat release,and the two-stage heat release can be observed during the process of main combustion heat release.More pre-injection mass makes NO_(x)gradually increase,but smoke opacity reaches the lowest point at 15%pre-injection proportion.EGR stratification can optimize the emission results under the split injection strategy,especially the considerable suppression of accumulation mode particulate emissions.Above all,fuel stratification coupled with EGR stratification is beneficial for further realizing the in-cylinder purification of pollutants.
基金Projects(51174253,51304245) supported by National Natural Science Foundation of China
文摘It is of great significance for cleaner production to substitute bio-energy for fossil fuels in iron ore sintering. However, with the replacement ratio increasing, the consistency of heat front and flame front is broken, and the thermal utilizing efficiency of fuel is reduced, which results in the decrease of yield and tumble index of sinter. Circulating flue gas to sintering bed as biochar replacing 40% coke, CO in flue gas can be reused so as to increase the thermal utilizing efficiency of fuels, and the consistency of two fronts is recovered for the circulating flue gas containing certain CO2, H2 O and lower O2, which contributes to increasing the maximum temperature, extending the high temperature duration time of sintering bed, and results in improving the output and quality of sinter. In the condition of circulating 40% flue gas, the sintering with biomass fuels is strengthened, and the sintering indexes with biomass fuel replacing 40% coke breeze are comparative to those of using coke breeze completely.
文摘The effect of wall temperature on the characteristics of random combustion of micro organic particles with recirculation was investigated. The effect of recirculating in micro-combustors is noticeable, hence it is necessary to present a model to describe the combustion process in these technologies. Recirculation phenomenon is evaluated by entering the exhausted heat from the post flam zone into the preheat zone. In this work, for modeling of random situation at the flame front, the source term in the equation of energy was modeled considering random situation for volatizing of particles in preheat zone. The comparison of obtained results from the proposed model by experimental data regards that the random model has a better agreement with experimental data than non-random model. Also, according to the results obtained by this model, wall temperature affects the amount of heat recirculation directly and higher values of wall temperature will lead to higher amounts of burning velocity and flame temperature.
基金Project(51576084) supported by the National Natural Science Foundation of China
文摘Flame is prone to lose its stability in micro-combustors due to the large amount of heat loss from the external walls. On the other hand, heat recirculation through the upstream combustor walls can enhance flame stability. These two aspects depend on the structural heat transfer, which is associated with the thickness and thermal conductivity of the combustor walls. In the present study, the effects of wall thickness and material on flame stability were numerically investigated by selecting two thicknesses (δ=0.2 and 0.4 mm) and two materials (quartz and SiC). The results show that when δ=0.2 mm, flame inclination occurs at a certain inlet velocity in both combustors, but it happens later in SiC combustor. For δ=0.4 mm, flame inclination still occurs in quartz combustor from a larger inlet velocity compared to the case of δ=0.2 mm. However, flame inclination in SiC combustor with δ=0.4 mm does not happen and it has a much larger blowout limit. Analysis reveals that a thicker wall can enhance heat recirculation and reduce heat loss simultaneously. Moreover, SiC combustor has larger heat recirculation ratio and smaller heat loss ratio. In summary, the micro-combustor with thicker and more conductive walls can harvest large flame stability limit.
基金Project(41072236)supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,ChinaProject(2009A027)supported by Youth Research Foundation of China University of Mining and Technology
文摘Based on the degradation characteristics of municipal solid waste(MSW)in China,the traditional anaerobic sequencing batch bioreactor landfill(ASBRL)was optimized,and an improved anaerobic sequencing batch bioreactor landfill(IASBRL)was put forward on the basis of leachate self-recirculation.By monitoring MSW composition,leachate characteristics variation and landfill gas(LFG)generation,the effect of IASBRL was comparatively studied by simulation landfill.Based on the adjusting,scouring and carrying effects of leachate self-recirculation,IASBRL can rapidly decrease Eh value to about-500mV and form a suitable biochemical environment for methanogens,which provides a precondition for stable cooperation between non-methanogens and methanogens.IASBRL can avoid the accumulation of organic acids,make VFA(volatile fatty acid)concentration and CODCr decrease along with the small range fluctuations,and form a stable decomposition-consumption synergy during MSW degradation,therefore,the hydrolysis rate of easy hydrolyze material reaches 71.2% in IASBRL.From the viewpoint of LFG resources in IASBRL,the cumulative LFG production increases to 2327.0L,CH4 mass fraction stabilizes at about 50%,and these provide a favorable precondition for LFG development.