Aluminum(Al) metal has been regarded as a promising anode for rechargeable batteries because of its natural abundance and high theoretical specific capacity. However, rechargeable aluminum batteries(RABs) using A1 met...Aluminum(Al) metal has been regarded as a promising anode for rechargeable batteries because of its natural abundance and high theoretical specific capacity. However, rechargeable aluminum batteries(RABs) using A1 metal as anode display poor cycling performances owing to interface problems between anode and electrolyte. The solid-electrolyte interphase(SEI) layer on the anode has been confirmed to be essential for improving cycling performances of rechargeable batteries. Therefore, we immerse the Al metal in ionic liquid electrolyte for some time before it is used as anode to remove the passive film and expose fresh Al to the electrolyte. Then the reactions of exposed Al, acid, oxygen and water in electrolyte are occurred to form an SEI layer in the cycle. Al/electrolyte/V_2 O_5 full batteries with the thin, uniform and stable SEI layer on Al metal anode perform high discharge capacity and coulombic efficiency(CE). This work illustrates that an SEI layer is formed on Al metal anode in the cycle using a simple and effective pretreatment process and results in superior cycling performances for RABs.展开更多
The exertion of superior high-energy density based on multivalent ions transfer of rechargeable aluminum batteries is greatly hindered by limited electrochemical stability window of typical water in salt electrolyte(W...The exertion of superior high-energy density based on multivalent ions transfer of rechargeable aluminum batteries is greatly hindered by limited electrochemical stability window of typical water in salt electrolyte(Wi SE). Recently, it is reported that a second salt addition to the Wi SE can offer further suppression of water activities, and achieves a much wider electrochemical window compared with aqueous Wi SE electrolytes. Hence, we demonstrate a class of water in bi-salt electrolyte containing the trifluoromethanesulfonate(OTF), which exhibits an ultra-wide electrochemical window of 4.35 V and a very low overpotential of 14.6 m V. Moreover, the interface chemistry between cathode and electrolyte is also confirmed via kinetic analysis. Surprisingly, we find the electrolyte can effectively suppress Mn dissolution from the cathode, alleviate self-discharge behavior, and ensure a stable electrode–electrolyte interface based on the interface concentrated-confinement effect. Owing to these unique merits of water in bi-salt electrolyte, the AlxMnO_(2)·nH_(2)O material delivers a high capacity of 364 m Ah g;and superb long-term cycling performance > 150 cycles with a capacity decay rate of 0.37% per cycle with coulombic efficiency at ca. 95%.展开更多
Nature published an article'An ultrafast rechargeable aluminum ion battery'On April 6,2015.The authors used many new materials to compose the cell,such as three-dimensional graphitic-foam as the cathode,an ion...Nature published an article'An ultrafast rechargeable aluminum ion battery'On April 6,2015.The authors used many new materials to compose the cell,such as three-dimensional graphitic-foam as the cathode,an ionic liquid electrolyte.The experimental cell has shown well-defined discharge voltage plateaus near 2 V.The cell is mechanically bendable and foldable without affecting its operation.展开更多
Rechargeable aluminum batteries(RABs)are attractive cadidates for next-generation energy storage and conversion,due to the low cost and high safety of Al resources,and high capacity of metal Al based on the three-elec...Rechargeable aluminum batteries(RABs)are attractive cadidates for next-generation energy storage and conversion,due to the low cost and high safety of Al resources,and high capacity of metal Al based on the three-electrons reaction mechanism.However,the development of RABs is greatly limited,because of the lack of advanced cathode materials,and their complicated and unclear reaction mechanisms.Exploring the novel nanostructured transition metal and carbon composites is an effective route for obtaining ideal cathode materials.In this work,we synthesize porous CoSnO_(3)/C nanocubes with oxygen vacancies for utilizing as cathodes in RABs for the first time.The intrinsic structure stability of the mixed metal cations and carbon coating can improve the cycling performance of cathodes by regulating the internal strains of the electrodes during volume expansion.The nanocubes with porous structures contribute to fast mass transportation which improves the rate capability.In addition to this,abundant oxygen vacancies promote the adsorption affinity of cathodes,which improves storage capacity.As a result,the CoSnO_(3)/C cathodes display an excellent reversible capacity of 292.1 mAh g^(-1) at 0.1 A g^(-1),a good rate performance with 109 mAh g^(-1) that is maintained even at 1 A g^(-1) and the provided stable cycling behavior for 500 cycles.Besides,a mechanism of intercalation of Al^(3+)within CoSnO_(3)/C cathode is proposed for the electrochemical process.Overall,this work provides a step toward the development of advanced cathode materials for RABs by engineering novel nanostructured mixed transition-metal oxides with carbon composite and proposes novel insights into chemistry for RABs.展开更多
基金supported by the National Basic Research Program of China (No. 2015CB251100)the Program for New Century Excellent Talents in University (NCET-13-0033)+1 种基金the Beijing Co-construction Project (No. 20150939014)the Beijing Higher Institution Engineering Research Center of Power Battery and Chemical Energy Materials
文摘Aluminum(Al) metal has been regarded as a promising anode for rechargeable batteries because of its natural abundance and high theoretical specific capacity. However, rechargeable aluminum batteries(RABs) using A1 metal as anode display poor cycling performances owing to interface problems between anode and electrolyte. The solid-electrolyte interphase(SEI) layer on the anode has been confirmed to be essential for improving cycling performances of rechargeable batteries. Therefore, we immerse the Al metal in ionic liquid electrolyte for some time before it is used as anode to remove the passive film and expose fresh Al to the electrolyte. Then the reactions of exposed Al, acid, oxygen and water in electrolyte are occurred to form an SEI layer in the cycle. Al/electrolyte/V_2 O_5 full batteries with the thin, uniform and stable SEI layer on Al metal anode perform high discharge capacity and coulombic efficiency(CE). This work illustrates that an SEI layer is formed on Al metal anode in the cycle using a simple and effective pretreatment process and results in superior cycling performances for RABs.
基金supported by the National Natural Science Foundation of China(22075028)。
文摘The exertion of superior high-energy density based on multivalent ions transfer of rechargeable aluminum batteries is greatly hindered by limited electrochemical stability window of typical water in salt electrolyte(Wi SE). Recently, it is reported that a second salt addition to the Wi SE can offer further suppression of water activities, and achieves a much wider electrochemical window compared with aqueous Wi SE electrolytes. Hence, we demonstrate a class of water in bi-salt electrolyte containing the trifluoromethanesulfonate(OTF), which exhibits an ultra-wide electrochemical window of 4.35 V and a very low overpotential of 14.6 m V. Moreover, the interface chemistry between cathode and electrolyte is also confirmed via kinetic analysis. Surprisingly, we find the electrolyte can effectively suppress Mn dissolution from the cathode, alleviate self-discharge behavior, and ensure a stable electrode–electrolyte interface based on the interface concentrated-confinement effect. Owing to these unique merits of water in bi-salt electrolyte, the AlxMnO_(2)·nH_(2)O material delivers a high capacity of 364 m Ah g;and superb long-term cycling performance > 150 cycles with a capacity decay rate of 0.37% per cycle with coulombic efficiency at ca. 95%.
文摘Nature published an article'An ultrafast rechargeable aluminum ion battery'On April 6,2015.The authors used many new materials to compose the cell,such as three-dimensional graphitic-foam as the cathode,an ionic liquid electrolyte.The experimental cell has shown well-defined discharge voltage plateaus near 2 V.The cell is mechanically bendable and foldable without affecting its operation.
基金supported by the National Natural Science Foundation of China (Grant No.22075028).
文摘Rechargeable aluminum batteries(RABs)are attractive cadidates for next-generation energy storage and conversion,due to the low cost and high safety of Al resources,and high capacity of metal Al based on the three-electrons reaction mechanism.However,the development of RABs is greatly limited,because of the lack of advanced cathode materials,and their complicated and unclear reaction mechanisms.Exploring the novel nanostructured transition metal and carbon composites is an effective route for obtaining ideal cathode materials.In this work,we synthesize porous CoSnO_(3)/C nanocubes with oxygen vacancies for utilizing as cathodes in RABs for the first time.The intrinsic structure stability of the mixed metal cations and carbon coating can improve the cycling performance of cathodes by regulating the internal strains of the electrodes during volume expansion.The nanocubes with porous structures contribute to fast mass transportation which improves the rate capability.In addition to this,abundant oxygen vacancies promote the adsorption affinity of cathodes,which improves storage capacity.As a result,the CoSnO_(3)/C cathodes display an excellent reversible capacity of 292.1 mAh g^(-1) at 0.1 A g^(-1),a good rate performance with 109 mAh g^(-1) that is maintained even at 1 A g^(-1) and the provided stable cycling behavior for 500 cycles.Besides,a mechanism of intercalation of Al^(3+)within CoSnO_(3)/C cathode is proposed for the electrochemical process.Overall,this work provides a step toward the development of advanced cathode materials for RABs by engineering novel nanostructured mixed transition-metal oxides with carbon composite and proposes novel insights into chemistry for RABs.