The reliability of real-time embedded software directly determines the reliability of the whole real-time embedded sys- tem, and the effective software testing is an important way to ensure software quality and reliab...The reliability of real-time embedded software directly determines the reliability of the whole real-time embedded sys- tem, and the effective software testing is an important way to ensure software quality and reliability. Based on the analysis of the characteristics of real-time embedded software, the formal method is introduced into the real-time embedded software testing field and the real-time extended finite state machine (RT-EFSM) model is studied firstly. Then, the time zone division method of real-time embedded system is presented and the definition and description methods of time-constrained transition equivalence class (timeCTEC) are presented. Furthermore, the approaches of the testing sequence and test case generation are put forward. Finally, the proposed method is applied to a typical avionics real- time embedded software testing practice and the examples of the timeCTEC, testing sequences and test cases are given. With the analysis of the testing result, the application verification shows that the proposed method can effectively describe the real-time embedded software state transition characteristics and real-time requirements and play the advantages of the formal methods in accuracy, effectiveness and the automation supporting. Combined with the testing platform, the real-time, closed loop and automated simulation testing for real-time embedded software can be realized effectively.展开更多
In this paper, a class of real-time parallel combined methods (RTPCM) of the digital simulation for a partitioned large system is presented. By means of combination of the parallelism across the system with the parall...In this paper, a class of real-time parallel combined methods (RTPCM) of the digital simulation for a partitioned large system is presented. By means of combination of the parallelism across the system with the parallelism across the method, stiff and non-stiff subsystems are solved in parallel on parallel computer by a parallel Rosenbrock method and a parallel RK method, respectively. Their construction, convergence and numerical stability are discussed, and the digitalsimulation experiments are conducted.展开更多
A class of modified parallel combined methods of real-time numerical simulation are presented for a stiff dynamic system. By combining the parallelism across the system with the parallelism across the method, and rela...A class of modified parallel combined methods of real-time numerical simulation are presented for a stiff dynamic system. By combining the parallelism across the system with the parallelism across the method, and relaxing the dependence of stage value computation on sampling time of input function, a class of modified real-time parallel combined methods are constructed. Stiff and nonstiff subsystems are solved in parallel on a parallel computer by a parallel Rosen-brock method and a parallel RK method, respectively. Their order conditions and convergences are discussed. The numerical simulation experiments show that this class of modified algorithms can get high speed and efficiency.展开更多
A new real-time underwater equipment location method adopting an electric field induced by a standard current source is proposed.Our goals were real-time tracking and location of stationary or moving underwater equipm...A new real-time underwater equipment location method adopting an electric field induced by a standard current source is proposed.Our goals were real-time tracking and location of stationary or moving underwater equipment both in shallow and deep seas,under noisy conditions.The main features of this method are as follows:(1)a standard current source on the water surface,which can be towed by a vehicle,consisting of two electrodes,a signal generator,and a GPS unit;(2)measurement of the extremely low frequency(ELF)electric field emitted by the current source,made possible by electric field sensors on the underwater equipment;(3)position of the underwater equipment is estimated in real time based on a progressive update extended Kalman filter(PUEKF),which is carried out using the propagation model of an ELF electric field because the electric field at the position of the underwater equipment and the current source position are known.We verified the accuracy of our method and confirmed real-time location feasibility through numerical,physical scale,and real-time sea experiments.Through numerical experiments,we verified that our method works for underwater equipment location in real-world conditions,and the location error can be less than 0.2 m.Next,real-time location experiments for stationary underwater measuring equipment in water tank were conducted.The result shows that the location error can be less than 0.1 m.We also confirmed real-time location feasibility through the use of offshore experiment.We expect that our method will complement conventional underwater acoustic location methods for underwater equipment in acoustically noisy environments.展开更多
To evaluate the fatigue damage reliability of critical members of the Nanjing Yangtze river bridge, according to the stress-number curve and Miner’s rule, the corresponding expressions for calculating the structural ...To evaluate the fatigue damage reliability of critical members of the Nanjing Yangtze river bridge, according to the stress-number curve and Miner’s rule, the corresponding expressions for calculating the structural fatigue damage reliability were derived. Fatigue damage reliability analysis of some critical members of the Nanjing Yangtze river bridge was carried out by using the strain-time histories measured by the structural health monitoring system of the bridge. The corresponding stress spectra were obtained by the real-time rain-flow counting method. Results of fatigue damage were calculated respectively by the reliability method at different reliability and compared with Miner’s rule. The results show that the fatigue damage of critical members of the Nanjing Yangtze river bridge is very small due to its low live-load stress level.展开更多
基金supported by the Aviation Science Foundation of China
文摘The reliability of real-time embedded software directly determines the reliability of the whole real-time embedded sys- tem, and the effective software testing is an important way to ensure software quality and reliability. Based on the analysis of the characteristics of real-time embedded software, the formal method is introduced into the real-time embedded software testing field and the real-time extended finite state machine (RT-EFSM) model is studied firstly. Then, the time zone division method of real-time embedded system is presented and the definition and description methods of time-constrained transition equivalence class (timeCTEC) are presented. Furthermore, the approaches of the testing sequence and test case generation are put forward. Finally, the proposed method is applied to a typical avionics real- time embedded software testing practice and the examples of the timeCTEC, testing sequences and test cases are given. With the analysis of the testing result, the application verification shows that the proposed method can effectively describe the real-time embedded software state transition characteristics and real-time requirements and play the advantages of the formal methods in accuracy, effectiveness and the automation supporting. Combined with the testing platform, the real-time, closed loop and automated simulation testing for real-time embedded software can be realized effectively.
文摘In this paper, a class of real-time parallel combined methods (RTPCM) of the digital simulation for a partitioned large system is presented. By means of combination of the parallelism across the system with the parallelism across the method, stiff and non-stiff subsystems are solved in parallel on parallel computer by a parallel Rosenbrock method and a parallel RK method, respectively. Their construction, convergence and numerical stability are discussed, and the digitalsimulation experiments are conducted.
基金This project was supported by the National Natural Science Foundation of China (19871080).
文摘A class of modified parallel combined methods of real-time numerical simulation are presented for a stiff dynamic system. By combining the parallelism across the system with the parallelism across the method, and relaxing the dependence of stage value computation on sampling time of input function, a class of modified real-time parallel combined methods are constructed. Stiff and nonstiff subsystems are solved in parallel on a parallel computer by a parallel Rosen-brock method and a parallel RK method, respectively. Their order conditions and convergences are discussed. The numerical simulation experiments show that this class of modified algorithms can get high speed and efficiency.
基金supported by the Youth Foundation of the National Natural Science Foundation of China(Grant No.51509252)。
文摘A new real-time underwater equipment location method adopting an electric field induced by a standard current source is proposed.Our goals were real-time tracking and location of stationary or moving underwater equipment both in shallow and deep seas,under noisy conditions.The main features of this method are as follows:(1)a standard current source on the water surface,which can be towed by a vehicle,consisting of two electrodes,a signal generator,and a GPS unit;(2)measurement of the extremely low frequency(ELF)electric field emitted by the current source,made possible by electric field sensors on the underwater equipment;(3)position of the underwater equipment is estimated in real time based on a progressive update extended Kalman filter(PUEKF),which is carried out using the propagation model of an ELF electric field because the electric field at the position of the underwater equipment and the current source position are known.We verified the accuracy of our method and confirmed real-time location feasibility through numerical,physical scale,and real-time sea experiments.Through numerical experiments,we verified that our method works for underwater equipment location in real-world conditions,and the location error can be less than 0.2 m.Next,real-time location experiments for stationary underwater measuring equipment in water tank were conducted.The result shows that the location error can be less than 0.1 m.We also confirmed real-time location feasibility through the use of offshore experiment.We expect that our method will complement conventional underwater acoustic location methods for underwater equipment in acoustically noisy environments.
基金Project(2001G025) supported by the Foundation of the Science and Technology Section of Ministry of Rail way of Chinaproject(2005) supported by the Postdoctoral Foundation of Central South University
文摘To evaluate the fatigue damage reliability of critical members of the Nanjing Yangtze river bridge, according to the stress-number curve and Miner’s rule, the corresponding expressions for calculating the structural fatigue damage reliability were derived. Fatigue damage reliability analysis of some critical members of the Nanjing Yangtze river bridge was carried out by using the strain-time histories measured by the structural health monitoring system of the bridge. The corresponding stress spectra were obtained by the real-time rain-flow counting method. Results of fatigue damage were calculated respectively by the reliability method at different reliability and compared with Miner’s rule. The results show that the fatigue damage of critical members of the Nanjing Yangtze river bridge is very small due to its low live-load stress level.