This paper theoretically analyses and studies stationary patterns in diffusively coupled bistable elements. Since these stationary patterns consist of two types of stationary mode structure: kink and pulse, a mode an...This paper theoretically analyses and studies stationary patterns in diffusively coupled bistable elements. Since these stationary patterns consist of two types of stationary mode structure: kink and pulse, a mode analysis method is proposed to approximate the solutions of these localized basic modes and to analyse their stabilities. Using this method, it reconstructs the whole stationary patterns. The cellular mode structures (kink and pulse) in bistable media fundamentally differ from stationary patterns in monostable media showing spatial periodicity induced by a diffusive Taring bifurcation.展开更多
The complex Ginzburg-Landau equation (CGLE) has been used to describe the travelling wave behaviour in reaction-diffusion (RD) systems. We argue that this description is valid only when the RD system is close to t...The complex Ginzburg-Landau equation (CGLE) has been used to describe the travelling wave behaviour in reaction-diffusion (RD) systems. We argue that this description is valid only when the RD system is close to the Hopf bifurcation, and is not valid when a RD system is away from the onset. To test this, we study spirals and anti-spirals in the chlorite-iodide-malonic acid (CIMA) reaction and the corresponding OGLE. Numerical simulations confirm that the OGLE can only be applied to the CIMA reaction when it is very near the Hopf onset.展开更多
In this paper, the problem of initial boundary value for nonlinear coupled reaction-diffusion systems arising in biochemistry, engineering and combustion_theory is considered.
This paper is concerned with an Initial Boundary Value Problem (IBVP) for a strongly coupled semilinear reaction-diffusion system. By using the upper and lower solutions method and Leray-Schauder fixed point theorem a...This paper is concerned with an Initial Boundary Value Problem (IBVP) for a strongly coupled semilinear reaction-diffusion system. By using the upper and lower solutions method and Leray-Schauder fixed point theorem and so on, the authors prove the global existence and uniqueness of a. smooth. solution for this IBVP under some appropriate conditions.展开更多
A new type of localized oscillatory pattern is presented in a two-layer coupled reaction-diffusion system under conditions in which no Hopf instability can be discerned in either layer.The transitions from stationary ...A new type of localized oscillatory pattern is presented in a two-layer coupled reaction-diffusion system under conditions in which no Hopf instability can be discerned in either layer.The transitions from stationary patterns to asynchronous and synchronous oscillatory patterns are obtained.A novel method based on decomposing coupled systems into two associated subsystems has been proposed to elucidate the mechanism of formation of oscillating patterns.Linear stability analysis of the associated subsystems reveals that the Turing pattern in one layer induces the other layer locally,undergoes a supercritical Hopf bifurcation and gives rise to localized oscillations.It is found that the sizes and positions of oscillations are determined by the spatial distribution of the Turing patterns.When the size is large,localized traveling waves such as spirals and targets emerge.These results may be useful for deeper understanding of pattern formation in complex systems,particularly multilayered systems.展开更多
In the article, the fully discrete finite difference scheme for a type of nonlinear reaction-diffusion equation is established. Then the new function space is introduced and the stability problem for the finite differ...In the article, the fully discrete finite difference scheme for a type of nonlinear reaction-diffusion equation is established. Then the new function space is introduced and the stability problem for the finite difference scheme is discussed by means of variational approximation method in this function space. The approach used is of a simple characteristic in gaining the stability condition of the scheme.展开更多
This paper is concerned with the stability of traveling wavefronts for a population dynamics model with time delay. Combining the weighted energy method and the comparison principle, the global exponential stability o...This paper is concerned with the stability of traveling wavefronts for a population dynamics model with time delay. Combining the weighted energy method and the comparison principle, the global exponential stability of noncritical traveling wavefronts (waves with speeds c 〉 c*, where c=c* is the minimal speed) is established, when the initial perturbations around the wavefront decays to zero exponentially in space as x → -∞, but it can be allowed arbitrary large in other locations, which improves the results in[9, 18, 21].展开更多
This paper deals with the special nonlinear reaction-diffusion equation. The finite difference scheme with incremental unknowns approximating to the differential equation (2.1) is set up by means of introducing incr...This paper deals with the special nonlinear reaction-diffusion equation. The finite difference scheme with incremental unknowns approximating to the differential equation (2.1) is set up by means of introducing incremental unknowns methods. Through the stability analyzing for the scheme, it was shown that the stability conditions of the finite difference schemes with the incremental unknowns are greatly improved when compared with the stability conditions of the corresponding classic difference scheme.展开更多
This paper deals with the properties of the solution to a class of nonlocal degenerate reaction-diffusion equation with nonlocal source,subject to the null Dirichlet boundary condition.We first give sufficient conditi...This paper deals with the properties of the solution to a class of nonlocal degenerate reaction-diffusion equation with nonlocal source,subject to the null Dirichlet boundary condition.We first give sufficient conditions for that the solution exists globally or blows up in the finite time.Then the blow-up time is also given.At last,we obtain a property differing from the local source which the blow-up set is the entire interval.展开更多
A new approach, is established to show that the semigroup {S(t)≥0 generated by a reaction-diffusion equation with supercritical exponent is uniformly quasi-differentiable in L^q(Ω) (2 ≤ q 〈 ∞) with respect ...A new approach, is established to show that the semigroup {S(t)≥0 generated by a reaction-diffusion equation with supercritical exponent is uniformly quasi-differentiable in L^q(Ω) (2 ≤ q 〈 ∞) with respect to the initial value. As an application, this proves the upper-bound of fractal dimension for its global attractor in the corresponding space.展开更多
This paper focuses on the analytical and numerical asymptotical stability of neutral reaction-diffusion equations with piecewise continuous arguments.First,for the analytical solutions of the equations,we derive their...This paper focuses on the analytical and numerical asymptotical stability of neutral reaction-diffusion equations with piecewise continuous arguments.First,for the analytical solutions of the equations,we derive their expressions and asymptotical stability criteria.Second,for the semi-discrete and one-parameter fully-discrete finite element methods solving the above equations,we work out the sufficient conditions for assuring that the finite element solutions are asymptotically stable.Finally,with a typical example with numerical experiments,we illustrate the applicability of the obtained theoretical results.展开更多
In this paper, the global blowup properties of solutions for a class of nonlinear non-local reaction-diffusion problems are investigated by the methods of the prior estimates. Moreover, the blowup rate estimate of the...In this paper, the global blowup properties of solutions for a class of nonlinear non-local reaction-diffusion problems are investigated by the methods of the prior estimates. Moreover, the blowup rate estimate of the solution is given.展开更多
In this paper the time-space correlation of density fluctuation of the 3He reaction-diffusion model is investigated where the equilibrium distribution is described by the generalized Maxwell Boltzmann distribution in ...In this paper the time-space correlation of density fluctuation of the 3He reaction-diffusion model is investigated where the equilibrium distribution is described by the generalized Maxwell Boltzmann distribution in the framework of Tsallis statistics. By using the density operator technique, the nonextensive pressure effect is introduced into the master equation and thus the generalized master equation is derived for the nonextensive system. This paper uses the ^3He reaction diffusion model to analyse the effect of nonextensive pressure on the fluctuation and finds that the nonextensive parameter q plays a very important role in determining the characteristics of the fluctuation waves.展开更多
A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation...A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation and state feedback to effectively manipulate the spatiotemporal dynamics of malware propagation. The hybrid control can not only suppress the Turing instability caused by diffusion factor but can also adjust the occurrence of Hopf bifurcation induced by time delay. Numerical simulation results show that the hybrid control strategy can efficiently manipulate the transmission dynamics to achieve our expected desired properties, thus reducing the harm of malware propagation to MWSNs.展开更多
Most biochemical processes in cells are usually modeled by reaction-diffusion (RD) equations. In these RD models, the diffusive process is assumed to be Gaussian. However, a growing number of studies have noted that...Most biochemical processes in cells are usually modeled by reaction-diffusion (RD) equations. In these RD models, the diffusive process is assumed to be Gaussian. However, a growing number of studies have noted that intracellular diffusion is anomalous at some or all times, which may result from a crowded environment and chemical kinetics. This work aims to computationally study the effects of chemical reactions on the diffusive dynamics of RD systems by using both stochastic and deterministic algorithms. Numerical method to estimate the mean-square displacement (MSD) from a deterministic algorithm is also investigated. Our computational results show that anomalous diffusion can be solely due to chemical reactions. The chemical reactions alone can cause anomalous sub-diffusion in the RD system at some or all times. The time-dependent anomalous diffusion exponent is found to depend on many parameters, including chemical reaction rates, reaction orders, and chemical concentrations.展开更多
In this paper, positiveness theorems of solutions for several differential inequalities are proved and are used to prove the existence of traveling wave front solutions of reaction-diffusion systems. As an application...In this paper, positiveness theorems of solutions for several differential inequalities are proved and are used to prove the existence of traveling wave front solutions of reaction-diffusion systems. As an application, two examples are given.展开更多
The purpose of this work is to study the global existence and asymptotic behavior of solutions to a coupled reaction-diffusion system describing epidemiological or chemical situations. Our analytical proofs are based ...The purpose of this work is to study the global existence and asymptotic behavior of solutions to a coupled reaction-diffusion system describing epidemiological or chemical situations. Our analytical proofs are based on the Lyapunov functional methods.展开更多
In this paper, we investigate the breakup of spiral wave under no-flux, periodic and Dirichlet boundary conditions respectively. When the parameter ε is close to a critical value for Doppler-induced wave breakup, the...In this paper, we investigate the breakup of spiral wave under no-flux, periodic and Dirichlet boundary conditions respectively. When the parameter ε is close to a critical value for Doppler-induced wave breakup, the instability of the system caused by the boundary effect occurs in the last two cases, resulting in the breakup of spiral wave near the boundary. With our defined average order measure of spiral wave (AOMSW), we quantify the degree of order of the system when the boundary-induced breakup of spiral wave happens. By analysing the AOMSW and outer diameter R of the spiral tip orbit, it is easy to find that this boundary effect is correlated with large values of R, especially under the Dirichlet boundary condition. This correlation is nonlinear, so the AOMSW sometimes oscillates with the variation of ε.展开更多
This paper investigates the global exponential stability of reaction-diffusion neural networks with discrete and distributed time-varying delays. By constructing a more general type of Lyapunov-Krasovskii functional c...This paper investigates the global exponential stability of reaction-diffusion neural networks with discrete and distributed time-varying delays. By constructing a more general type of Lyapunov-Krasovskii functional combined with a free-weighting matrix approach and analysis techniques, delay-dependent exponential stability criteria are derived in the form of linear matrix inequalities. The obtained results are dependent on the size of the time-vaxying delays and the measure of the space, which are usually less conservative than delay-independent and space-independent ones. These results are easy to check, and improve upon the existing stability results. Some remarks are given to show the advantages of the obtained results over the previous results. A numerical example has been presented to show the usefulness of the derived linear matrix inequality (LMI)-based stability conditions.展开更多
The paper first deals with the existence of the maximal attractor of classical solution for reaction diffusion equation with dispersion, and gives the sup-norm estimate for the attractor. This estimate is optimal for ...The paper first deals with the existence of the maximal attractor of classical solution for reaction diffusion equation with dispersion, and gives the sup-norm estimate for the attractor. This estimate is optimal for the attractor under Neumann boundary condition. Next, the same problem is discussed for reaction diffusion system with uniformly contracting rectangle, and it reveals that the maximal attractor of classical solution for such system in the whole space is only necessary to be established in some invariant region. Finally, a few examples of application are given.展开更多
基金Project partially supported by the Outstanding Oversea Scholar Foundation of the Chinese Academy of Sciences (Bairenjihua)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘This paper theoretically analyses and studies stationary patterns in diffusively coupled bistable elements. Since these stationary patterns consist of two types of stationary mode structure: kink and pulse, a mode analysis method is proposed to approximate the solutions of these localized basic modes and to analyse their stabilities. Using this method, it reconstructs the whole stationary patterns. The cellular mode structures (kink and pulse) in bistable media fundamentally differ from stationary patterns in monostable media showing spatial periodicity induced by a diffusive Taring bifurcation.
基金Project supported by the National Natural Science Foundation of China (Grant No 10274003) and the Department of Science and Technology of China.Acknowledgement We thank Cheng X, Wang C and Wang S for helpful discussion.
文摘The complex Ginzburg-Landau equation (CGLE) has been used to describe the travelling wave behaviour in reaction-diffusion (RD) systems. We argue that this description is valid only when the RD system is close to the Hopf bifurcation, and is not valid when a RD system is away from the onset. To test this, we study spirals and anti-spirals in the chlorite-iodide-malonic acid (CIMA) reaction and the corresponding OGLE. Numerical simulations confirm that the OGLE can only be applied to the CIMA reaction when it is very near the Hopf onset.
文摘In this paper, the problem of initial boundary value for nonlinear coupled reaction-diffusion systems arising in biochemistry, engineering and combustion_theory is considered.
文摘This paper is concerned with an Initial Boundary Value Problem (IBVP) for a strongly coupled semilinear reaction-diffusion system. By using the upper and lower solutions method and Leray-Schauder fixed point theorem and so on, the authors prove the global existence and uniqueness of a. smooth. solution for this IBVP under some appropriate conditions.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12275065,12275064,12475203)the Natural Science Foundation of Hebei Province(Grant Nos.A2021201010 and A2024201020)+3 种基金Interdisciplinary Research Program of Natural Science of Hebei University(Grant No.DXK202108)Hebei Provincial Central Government Guiding Local Science and Technology Development Funds(Grant No.236Z1501G)Scientific Research and Innovation Team Foundation of Hebei University(Grant No.IT2023B03)the Excellent Youth Research Innovation Team of Hebei University(Grant No.QNTD202402)。
文摘A new type of localized oscillatory pattern is presented in a two-layer coupled reaction-diffusion system under conditions in which no Hopf instability can be discerned in either layer.The transitions from stationary patterns to asynchronous and synchronous oscillatory patterns are obtained.A novel method based on decomposing coupled systems into two associated subsystems has been proposed to elucidate the mechanism of formation of oscillating patterns.Linear stability analysis of the associated subsystems reveals that the Turing pattern in one layer induces the other layer locally,undergoes a supercritical Hopf bifurcation and gives rise to localized oscillations.It is found that the sizes and positions of oscillations are determined by the spatial distribution of the Turing patterns.When the size is large,localized traveling waves such as spirals and targets emerge.These results may be useful for deeper understanding of pattern formation in complex systems,particularly multilayered systems.
文摘In the article, the fully discrete finite difference scheme for a type of nonlinear reaction-diffusion equation is established. Then the new function space is introduced and the stability problem for the finite difference scheme is discussed by means of variational approximation method in this function space. The approach used is of a simple characteristic in gaining the stability condition of the scheme.
基金supported by NSF of China(11401478)Gansu Provincial Natural Science Foundation(145RJZA220)
文摘This paper is concerned with the stability of traveling wavefronts for a population dynamics model with time delay. Combining the weighted energy method and the comparison principle, the global exponential stability of noncritical traveling wavefronts (waves with speeds c 〉 c*, where c=c* is the minimal speed) is established, when the initial perturbations around the wavefront decays to zero exponentially in space as x → -∞, but it can be allowed arbitrary large in other locations, which improves the results in[9, 18, 21].
文摘This paper deals with the special nonlinear reaction-diffusion equation. The finite difference scheme with incremental unknowns approximating to the differential equation (2.1) is set up by means of introducing incremental unknowns methods. Through the stability analyzing for the scheme, it was shown that the stability conditions of the finite difference schemes with the incremental unknowns are greatly improved when compared with the stability conditions of the corresponding classic difference scheme.
基金Supported by the National Natural Science Foundation of China(10571024)
文摘This paper deals with the properties of the solution to a class of nonlocal degenerate reaction-diffusion equation with nonlocal source,subject to the null Dirichlet boundary condition.We first give sufficient conditions for that the solution exists globally or blows up in the finite time.Then the blow-up time is also given.At last,we obtain a property differing from the local source which the blow-up set is the entire interval.
基金Supported by NSFC Grant(11401100,10601021)the foundation of Fujian Education Department(JB14021)the innovation foundation of Fujian Normal University(IRTL1206)
文摘A new approach, is established to show that the semigroup {S(t)≥0 generated by a reaction-diffusion equation with supercritical exponent is uniformly quasi-differentiable in L^q(Ω) (2 ≤ q 〈 ∞) with respect to the initial value. As an application, this proves the upper-bound of fractal dimension for its global attractor in the corresponding space.
文摘This paper focuses on the analytical and numerical asymptotical stability of neutral reaction-diffusion equations with piecewise continuous arguments.First,for the analytical solutions of the equations,we derive their expressions and asymptotical stability criteria.Second,for the semi-discrete and one-parameter fully-discrete finite element methods solving the above equations,we work out the sufficient conditions for assuring that the finite element solutions are asymptotically stable.Finally,with a typical example with numerical experiments,we illustrate the applicability of the obtained theoretical results.
文摘In this paper, the global blowup properties of solutions for a class of nonlinear non-local reaction-diffusion problems are investigated by the methods of the prior estimates. Moreover, the blowup rate estimate of the solution is given.
文摘In this paper the time-space correlation of density fluctuation of the 3He reaction-diffusion model is investigated where the equilibrium distribution is described by the generalized Maxwell Boltzmann distribution in the framework of Tsallis statistics. By using the density operator technique, the nonextensive pressure effect is introduced into the master equation and thus the generalized master equation is derived for the nonextensive system. This paper uses the ^3He reaction diffusion model to analyse the effect of nonextensive pressure on the fluctuation and finds that the nonextensive parameter q plays a very important role in determining the characteristics of the fluctuation waves.
基金Project supported by the National Natural Science Foundation of China (Grant No. 62073172)the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20221329)。
文摘A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation and state feedback to effectively manipulate the spatiotemporal dynamics of malware propagation. The hybrid control can not only suppress the Turing instability caused by diffusion factor but can also adjust the occurrence of Hopf bifurcation induced by time delay. Numerical simulation results show that the hybrid control strategy can efficiently manipulate the transmission dynamics to achieve our expected desired properties, thus reducing the harm of malware propagation to MWSNs.
基金supported by the Thailand Research Fund and Mahidol University(Grant No.TRG5880157),the Thailand Center of Excellence in Physics(ThEP),CHE,Thailand,and the Development Promotion of Science and Technology
文摘Most biochemical processes in cells are usually modeled by reaction-diffusion (RD) equations. In these RD models, the diffusive process is assumed to be Gaussian. However, a growing number of studies have noted that intracellular diffusion is anomalous at some or all times, which may result from a crowded environment and chemical kinetics. This work aims to computationally study the effects of chemical reactions on the diffusive dynamics of RD systems by using both stochastic and deterministic algorithms. Numerical method to estimate the mean-square displacement (MSD) from a deterministic algorithm is also investigated. Our computational results show that anomalous diffusion can be solely due to chemical reactions. The chemical reactions alone can cause anomalous sub-diffusion in the RD system at some or all times. The time-dependent anomalous diffusion exponent is found to depend on many parameters, including chemical reaction rates, reaction orders, and chemical concentrations.
基金Research supported by the National Natural Science Foundation of China (19971004 19871005).
文摘In this paper, positiveness theorems of solutions for several differential inequalities are proved and are used to prove the existence of traveling wave front solutions of reaction-diffusion systems. As an application, two examples are given.
文摘The purpose of this work is to study the global existence and asymptotic behavior of solutions to a coupled reaction-diffusion system describing epidemiological or chemical situations. Our analytical proofs are based on the Lyapunov functional methods.
基金Project supported by the Major Program of the National Natural Science Foundation for (Grant No 10335010) and the National Natural Science Foundation-the Science Foundation of China Academy of Engineering Physics (NSAF) (Grant No 10576005). We are grateful to Professor Li Jing-Hui and Dr Yuan Guo-Yong for valuable discussion.
文摘In this paper, we investigate the breakup of spiral wave under no-flux, periodic and Dirichlet boundary conditions respectively. When the parameter ε is close to a critical value for Doppler-induced wave breakup, the instability of the system caused by the boundary effect occurs in the last two cases, resulting in the breakup of spiral wave near the boundary. With our defined average order measure of spiral wave (AOMSW), we quantify the degree of order of the system when the boundary-induced breakup of spiral wave happens. By analysing the AOMSW and outer diameter R of the spiral tip orbit, it is easy to find that this boundary effect is correlated with large values of R, especially under the Dirichlet boundary condition. This correlation is nonlinear, so the AOMSW sometimes oscillates with the variation of ε.
基金supported by the National Natural Science Foundation of China (Grant No. 60974139)partially supported by the Fundamental Research Funds for the Central Universities
文摘This paper investigates the global exponential stability of reaction-diffusion neural networks with discrete and distributed time-varying delays. By constructing a more general type of Lyapunov-Krasovskii functional combined with a free-weighting matrix approach and analysis techniques, delay-dependent exponential stability criteria are derived in the form of linear matrix inequalities. The obtained results are dependent on the size of the time-vaxying delays and the measure of the space, which are usually less conservative than delay-independent and space-independent ones. These results are easy to check, and improve upon the existing stability results. Some remarks are given to show the advantages of the obtained results over the previous results. A numerical example has been presented to show the usefulness of the derived linear matrix inequality (LMI)-based stability conditions.
基金This work is supported by the Natural Science Foundation of China(10071048) Excellent Young Teachers Program by the MOE of China
文摘The paper first deals with the existence of the maximal attractor of classical solution for reaction diffusion equation with dispersion, and gives the sup-norm estimate for the attractor. This estimate is optimal for the attractor under Neumann boundary condition. Next, the same problem is discussed for reaction diffusion system with uniformly contracting rectangle, and it reveals that the maximal attractor of classical solution for such system in the whole space is only necessary to be established in some invariant region. Finally, a few examples of application are given.