Polymeric perylene diimide(PDI)has been evidenced as a good candidate for photocatalytic water oxidation,yet the origin of the photocatalytic oxygen evolution activity remains unclear and needs further exploration.Her...Polymeric perylene diimide(PDI)has been evidenced as a good candidate for photocatalytic water oxidation,yet the origin of the photocatalytic oxygen evolution activity remains unclear and needs further exploration.Herein,with crystal and atomic structures of the self-assembled PDI revealed from the X-ray diffraction pattern,the electronic structure is theoretically illustrated by the first-principles density functional theory calculations,suggesting the suitable band structure and the direct electronic transition for efficient photocatalytic oxygen evolution over PDI.It is confirmed that the carbonyl O atoms on the conjugation structure serve as the active sites for oxygen evolution reaction by the crystal orbital Hamiltonian group analysis.The calculations of reaction free energy changes indicate that the oxygen evolution reaction should follow the reaction pathway of H_(2)O→^(*)OH→^(*)O→^(*)OOH→^(*)O_(2)with an overpotential of 0.81 V.Through an in-depth theoretical computational analysis in the atomic and electronic structures,the origin of photocatalytic oxygen evolution activity for PDI is well illustrated,which would help the rational design and modification of polymeric photocatalysts for efficient oxygen evolution.展开更多
Interfaces play critical roles in electronic devices and provide great diversity of film morphology and device performance.We retrospect the substrate mediated vacuum film growth of benchmark high mobility material 2,...Interfaces play critical roles in electronic devices and provide great diversity of film morphology and device performance.We retrospect the substrate mediated vacuum film growth of benchmark high mobility material 2,7-dioctyl[1]benzothieno[3,2-b]benzothiophene(C8-BTBT)and the interface electronic structures.The film growth of C8-BTBT molecules is diversified depending on the substrate-molecule and molecule-molecule interactions.On atomic smooth substrates C8-BTBT film grows in layer-by-layer mode while on coarse substrate it grows in islands mode.The initial molecular layer at dielectric,semiconductor and conductive substrates displays slight different lattice structure.The initial molecule orientation depends on the substrate and will gradually change to standing up configuration as in bulk phase.C8-BTBT behaves as electron donor when contacting with dielectric and stable conductive materials.This usually induces a dipole layer pointing to C8-BTBT and an upward bend bending in C8-BTBT side toward the interface.Although it is air stable,C8-BTBT is chemically reactive with some transition metals and compounds.The orientation change from lying down to standing up in the film usually leads to decrease of ionization potential.The article provides insights to the interface physical and chemical processes and suggestions for optimal design and fabrication of C8-BTBT based devices.展开更多
基金supported by National Natural Science Foundation of China(No.523B2070,No.52225606).
文摘Polymeric perylene diimide(PDI)has been evidenced as a good candidate for photocatalytic water oxidation,yet the origin of the photocatalytic oxygen evolution activity remains unclear and needs further exploration.Herein,with crystal and atomic structures of the self-assembled PDI revealed from the X-ray diffraction pattern,the electronic structure is theoretically illustrated by the first-principles density functional theory calculations,suggesting the suitable band structure and the direct electronic transition for efficient photocatalytic oxygen evolution over PDI.It is confirmed that the carbonyl O atoms on the conjugation structure serve as the active sites for oxygen evolution reaction by the crystal orbital Hamiltonian group analysis.The calculations of reaction free energy changes indicate that the oxygen evolution reaction should follow the reaction pathway of H_(2)O→^(*)OH→^(*)O→^(*)OOH→^(*)O_(2)with an overpotential of 0.81 V.Through an in-depth theoretical computational analysis in the atomic and electronic structures,the origin of photocatalytic oxygen evolution activity for PDI is well illustrated,which would help the rational design and modification of polymeric photocatalysts for efficient oxygen evolution.
基金Project(2017YFA0206602)supported in part by the National Key Research and Development Program of China。
文摘Interfaces play critical roles in electronic devices and provide great diversity of film morphology and device performance.We retrospect the substrate mediated vacuum film growth of benchmark high mobility material 2,7-dioctyl[1]benzothieno[3,2-b]benzothiophene(C8-BTBT)and the interface electronic structures.The film growth of C8-BTBT molecules is diversified depending on the substrate-molecule and molecule-molecule interactions.On atomic smooth substrates C8-BTBT film grows in layer-by-layer mode while on coarse substrate it grows in islands mode.The initial molecular layer at dielectric,semiconductor and conductive substrates displays slight different lattice structure.The initial molecule orientation depends on the substrate and will gradually change to standing up configuration as in bulk phase.C8-BTBT behaves as electron donor when contacting with dielectric and stable conductive materials.This usually induces a dipole layer pointing to C8-BTBT and an upward bend bending in C8-BTBT side toward the interface.Although it is air stable,C8-BTBT is chemically reactive with some transition metals and compounds.The orientation change from lying down to standing up in the film usually leads to decrease of ionization potential.The article provides insights to the interface physical and chemical processes and suggestions for optimal design and fabrication of C8-BTBT based devices.