构造一种适用于反向传播(backpropagation,BP)神经网络的新型激活函数Lfun(logarithmic series function),并使用基于该函数的BP神经网络进行机床能耗状态的预测。首先,分析Sigmoid系列和ReLU系列激活函数的特点和缺陷,结合对数函数,构...构造一种适用于反向传播(backpropagation,BP)神经网络的新型激活函数Lfun(logarithmic series function),并使用基于该函数的BP神经网络进行机床能耗状态的预测。首先,分析Sigmoid系列和ReLU系列激活函数的特点和缺陷,结合对数函数,构造了一种非线性分段含参数激活函数。该函数可导且光滑、导数形式简单、单调递增、输出均值为零,且通过可变参数使函数形式更灵活;其次,通过数值仿真实验在公共数据集上将Lfun函数与Sigmoid、ReLU、tanh、Leaky_ReLU和ELU函数的性能进行对比;最后,使用基于Lfun函数的BP神经网络进行机床能耗状态的预测。实验结果表明,使用Lfun函数的BP神经网络相较于使用其他几种常用激活函数的网络具有更好的性能。展开更多
尝试引入Re LU function核的ELM算法及Relief Algorithm对开采区最大下沉量进行预测。首先基于Relief Algorithm对现场岩移数据进行筛选优化;然后通过隐含层数目循环实验选出预测精度较高的ELM预测模型隐含层数目;再筛选优化后的参数为...尝试引入Re LU function核的ELM算法及Relief Algorithm对开采区最大下沉量进行预测。首先基于Relief Algorithm对现场岩移数据进行筛选优化;然后通过隐含层数目循环实验选出预测精度较高的ELM预测模型隐含层数目;再筛选优化后的参数为输入,最大下沉为目标分别建立基于Re LU function核、igmoid function核、Radial basis function核及Hardlim function核的ELM预测模型;最后对4种模型的预测结果进行对比分析。结果表明:采厚、平均采深、走向长度和倾向长度与最大下沉关系显著;以Re LU function核、隐含层神经元数目为57的ELM的预测结果精度显著优于对比组。展开更多
文摘构造一种适用于反向传播(backpropagation,BP)神经网络的新型激活函数Lfun(logarithmic series function),并使用基于该函数的BP神经网络进行机床能耗状态的预测。首先,分析Sigmoid系列和ReLU系列激活函数的特点和缺陷,结合对数函数,构造了一种非线性分段含参数激活函数。该函数可导且光滑、导数形式简单、单调递增、输出均值为零,且通过可变参数使函数形式更灵活;其次,通过数值仿真实验在公共数据集上将Lfun函数与Sigmoid、ReLU、tanh、Leaky_ReLU和ELU函数的性能进行对比;最后,使用基于Lfun函数的BP神经网络进行机床能耗状态的预测。实验结果表明,使用Lfun函数的BP神经网络相较于使用其他几种常用激活函数的网络具有更好的性能。
文摘尝试引入Re LU function核的ELM算法及Relief Algorithm对开采区最大下沉量进行预测。首先基于Relief Algorithm对现场岩移数据进行筛选优化;然后通过隐含层数目循环实验选出预测精度较高的ELM预测模型隐含层数目;再筛选优化后的参数为输入,最大下沉为目标分别建立基于Re LU function核、igmoid function核、Radial basis function核及Hardlim function核的ELM预测模型;最后对4种模型的预测结果进行对比分析。结果表明:采厚、平均采深、走向长度和倾向长度与最大下沉关系显著;以Re LU function核、隐含层神经元数目为57的ELM的预测结果精度显著优于对比组。