This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapi...This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.展开更多
智能体路径规划算法旨在规划某个智能体的行为轨迹,使其在不碰到障碍物的情况下安全且高效地从起始点到达目标点.目前智能体路径规划算法已经被广泛应用到各种重要的物理信息系统中,因此在实际投入使用前对算法进行测试,以评估其性能是...智能体路径规划算法旨在规划某个智能体的行为轨迹,使其在不碰到障碍物的情况下安全且高效地从起始点到达目标点.目前智能体路径规划算法已经被广泛应用到各种重要的物理信息系统中,因此在实际投入使用前对算法进行测试,以评估其性能是否满足需求就非常重要.然而,作为路径规划算法的输入,任务空间中威胁障碍物的分布形式复杂且多样.此外,路径规划算法在为每个测试用例规划路径时,通常需要较高的运行代价.为了提升路径规划算法的测试效率,将动态随机测试思想引入到路径规划算法中,提出了面向智能体路径规划算法的动态随机测试方法(dynamic random testing approach for intelligent agent path planning algorithms,DRT-PP).具体来说,DRT-PP对路径规划任务空间进行离散划分,并在每个子区域内引入威胁生成概率,进而构建测试剖面,该测试剖面可以作为测试策略在测试用例生成过程中使用.此外,DRT-PP在测试过程中通过动态调整测试剖面,使其逐渐优化,从而提升测试效率.实验结果显示,与随机测试及自适应随机测试相比,DRT-PP方法能够在保证测试用例多样性的同时,生成更多能够暴露被测算法性能缺陷的测试用例.展开更多
针对Informed-RRT(rapidly-exploring random tree)^(*)算法收敛速度慢、优化效率低和生成路径无法满足实际需求等问题,开展了基于MI-RRT^(*)(Modified Informed-RRT^(*))算法的路径规划研究,通过引入贪心采样和自适应步长的方法提高算...针对Informed-RRT(rapidly-exploring random tree)^(*)算法收敛速度慢、优化效率低和生成路径无法满足实际需求等问题,开展了基于MI-RRT^(*)(Modified Informed-RRT^(*))算法的路径规划研究,通过引入贪心采样和自适应步长的方法提高算法的收敛率,减少路径生成时间、降低内存占用;利用最小化Snap曲线优化的方法使路径平滑的同时动力也变化平缓,达到节省能量的效果,并提供实际可执行的路径。最后通过多组不同复杂度的实验环境表明,较Informed-RRT^(*)算法MI-RRT^(*)算法稳定性更高、所得规划路径平滑可执行,并且能够减少20%的迭代次数和25%的搜索时间,得出在开阔以及密集环境中MI-RRT^(*)算法较Informed-RRT^(*)和RRT^(*)算法有明显的优势。展开更多
RRT(rapidly exploring random tree)算法是一种基于采样的路径规划算法,可以在高维环境中搜索出一条路径。传统的RRT算法存在节点利用率低、计算量偏大的问题。针对这些问题,基于快速RRT*(Quick-RRT*)算法,通过优化重选父节点与剪枝范...RRT(rapidly exploring random tree)算法是一种基于采样的路径规划算法,可以在高维环境中搜索出一条路径。传统的RRT算法存在节点利用率低、计算量偏大的问题。针对这些问题,基于快速RRT*(Quick-RRT*)算法,通过优化重选父节点与剪枝范围策略、改进采样方式、引入自适应步长,对快速RRT*算法进行改进,使得算法耗时和路径长度更短。同时,加入节点连接筛选策略,消除路径中过大的转弯角。实验结果表明,改进后的算法在三维环境下能快速找到一条距离最短的无碰撞路径,且运行时间也大幅降低。展开更多
针对多自由度机械臂在三维空间中轨迹规划的高复杂性、安全性和可靠性等问题,基于快速扩展随机树(rapidly-exploring random trees,RRT)算法在高维空间中的概率完备性和计算轻量性等优势,提出了一种基于均匀概率的目标启发式RRT(target ...针对多自由度机械臂在三维空间中轨迹规划的高复杂性、安全性和可靠性等问题,基于快速扩展随机树(rapidly-exploring random trees,RRT)算法在高维空间中的概率完备性和计算轻量性等优势,提出了一种基于均匀概率的目标启发式RRT(target heuristic RRT based on uniform probability,PH-RRT)方法.首先,该方法基于均匀概率的分配机制选取概率采样阈值作为节点标准,并与随机采样值进行比较.当随机采样值在设定的阈值范围内时,确定目标点为随机点进行节点扩展.当随机采样值在设定的阈值范围外时,随机生成随机点,在目标重力和随机点重力的目标启发式作用下进行节点扩展.然后,在已规划出的路径的基础上,进一步引入广度优先搜索思想,针对规划出的路径进行优化处理,提高了路径平滑度并减少了路径长度.实验结果表明,该方法能较好地解决传统RRT方法固有的盲目搜索问题,减少路径规划时间和路径长度,提高机械臂的路径规划效率.展开更多
基金the National Natural Science Foundation of China(Grant No.42274119)the Liaoning Revitalization Talents Program(Grant No.XLYC2002082)+1 种基金National Key Research and Development Plan Key Special Projects of Science and Technology Military Civil Integration(Grant No.2022YFF1400500)the Key Project of Science and Technology Commission of the Central Military Commission.
文摘This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.
文摘智能体路径规划算法旨在规划某个智能体的行为轨迹,使其在不碰到障碍物的情况下安全且高效地从起始点到达目标点.目前智能体路径规划算法已经被广泛应用到各种重要的物理信息系统中,因此在实际投入使用前对算法进行测试,以评估其性能是否满足需求就非常重要.然而,作为路径规划算法的输入,任务空间中威胁障碍物的分布形式复杂且多样.此外,路径规划算法在为每个测试用例规划路径时,通常需要较高的运行代价.为了提升路径规划算法的测试效率,将动态随机测试思想引入到路径规划算法中,提出了面向智能体路径规划算法的动态随机测试方法(dynamic random testing approach for intelligent agent path planning algorithms,DRT-PP).具体来说,DRT-PP对路径规划任务空间进行离散划分,并在每个子区域内引入威胁生成概率,进而构建测试剖面,该测试剖面可以作为测试策略在测试用例生成过程中使用.此外,DRT-PP在测试过程中通过动态调整测试剖面,使其逐渐优化,从而提升测试效率.实验结果显示,与随机测试及自适应随机测试相比,DRT-PP方法能够在保证测试用例多样性的同时,生成更多能够暴露被测算法性能缺陷的测试用例.
文摘针对Informed-RRT(rapidly-exploring random tree)^(*)算法收敛速度慢、优化效率低和生成路径无法满足实际需求等问题,开展了基于MI-RRT^(*)(Modified Informed-RRT^(*))算法的路径规划研究,通过引入贪心采样和自适应步长的方法提高算法的收敛率,减少路径生成时间、降低内存占用;利用最小化Snap曲线优化的方法使路径平滑的同时动力也变化平缓,达到节省能量的效果,并提供实际可执行的路径。最后通过多组不同复杂度的实验环境表明,较Informed-RRT^(*)算法MI-RRT^(*)算法稳定性更高、所得规划路径平滑可执行,并且能够减少20%的迭代次数和25%的搜索时间,得出在开阔以及密集环境中MI-RRT^(*)算法较Informed-RRT^(*)和RRT^(*)算法有明显的优势。
文摘RRT(rapidly exploring random tree)算法是一种基于采样的路径规划算法,可以在高维环境中搜索出一条路径。传统的RRT算法存在节点利用率低、计算量偏大的问题。针对这些问题,基于快速RRT*(Quick-RRT*)算法,通过优化重选父节点与剪枝范围策略、改进采样方式、引入自适应步长,对快速RRT*算法进行改进,使得算法耗时和路径长度更短。同时,加入节点连接筛选策略,消除路径中过大的转弯角。实验结果表明,改进后的算法在三维环境下能快速找到一条距离最短的无碰撞路径,且运行时间也大幅降低。
文摘针对多自由度机械臂在三维空间中轨迹规划的高复杂性、安全性和可靠性等问题,基于快速扩展随机树(rapidly-exploring random trees,RRT)算法在高维空间中的概率完备性和计算轻量性等优势,提出了一种基于均匀概率的目标启发式RRT(target heuristic RRT based on uniform probability,PH-RRT)方法.首先,该方法基于均匀概率的分配机制选取概率采样阈值作为节点标准,并与随机采样值进行比较.当随机采样值在设定的阈值范围内时,确定目标点为随机点进行节点扩展.当随机采样值在设定的阈值范围外时,随机生成随机点,在目标重力和随机点重力的目标启发式作用下进行节点扩展.然后,在已规划出的路径的基础上,进一步引入广度优先搜索思想,针对规划出的路径进行优化处理,提高了路径平滑度并减少了路径长度.实验结果表明,该方法能较好地解决传统RRT方法固有的盲目搜索问题,减少路径规划时间和路径长度,提高机械臂的路径规划效率.