期刊文献+
共找到551篇文章
< 1 2 28 >
每页显示 20 50 100
基于RF和EBKRP算法的新安江流域有效土壤厚度反演
1
作者 王尚晓 张晓东 +6 位作者 张明 牛晓楠 周墨 唐志敏 张洁 宗乐丽 徐帅 《水土保持通报》 北大核心 2025年第1期168-177,共10页
[目的]快速、准确地获取区域有效土壤厚度,分析其空间分布特征和影响因素,为植被生长、土壤保持和粮食安全工作提供理论指导。[方法]以新安江流域为研究区,将野外调查数据、地形、岩性和气候等成土因素结合起来,采用经验贝叶斯克里金回... [目的]快速、准确地获取区域有效土壤厚度,分析其空间分布特征和影响因素,为植被生长、土壤保持和粮食安全工作提供理论指导。[方法]以新安江流域为研究区,将野外调查数据、地形、岩性和气候等成土因素结合起来,采用经验贝叶斯克里金回归预测(EBKRP)和随机森林(RF)算法,得到有效土壤厚度反演结果,并分析其与环境变量之间的关系。[结果](1)区域平均有效土壤厚度为0.2~0.3 m,城镇建设集中和人类活动密集的盆地和平原区土壤厚度较高,丘陵山地区则较低。(2)从MAE(平均绝对误差)、R^(2)(判定系数)和RMSE(均方根误差)3项精度评价指标来看,RF算法的预测结果明显优于EBKRP算法,而且更能显示出土壤厚度空间异质性分布特征,在一定程度上提高了土壤厚度数字制图的效果。(3)有效土壤厚度的估算受地形和气候变量的影响较大,它们分别占变量重要性的46.77%和18.78%。[结论] RF算法能够有效实现对区域有效土壤厚度的反演,克服了土壤厚度空间异质性的特点,相较于有限采样的模型更精确,分辨率也更高。 展开更多
关键词 有效土壤厚度 随机森林(rf) 土壤数字制图 经验贝叶斯克里金回归预测(EBKRP) 新安江流域
在线阅读 下载PDF
基于RF-Apriori算法考虑填补缺失值的高速公路事故致因分析
2
作者 薛乐 于露 +2 位作者 金龙哲 李博 沈文进 《中国安全科学学报》 北大核心 2025年第4期211-218,共8页
为改善高速公路交通安全状况,以法国2018-2022年的26320条高速公路交通事故数据作为研究对象,选择3种具有代表性的算法填补数据中的缺失值,包括随机森林(RF)算法、期望最大化(EM)算法以及K最近邻(KNN)算法。并基于填补前后变量方差的变... 为改善高速公路交通安全状况,以法国2018-2022年的26320条高速公路交通事故数据作为研究对象,选择3种具有代表性的算法填补数据中的缺失值,包括随机森林(RF)算法、期望最大化(EM)算法以及K最近邻(KNN)算法。并基于填补前后变量方差的变化比较不同填补算法对数据稳定性的影响,并运用Apriori关联规则算法对完成填补的事故数据进行不同严重程度等级的高速公路事故致因分析。结果表明:经缺失值填补后,RF算法稳定性更优,相较于原始数据训练的模型准确率提高5.66%,召回率提高9.22%,F 1分数提高9.91%。客车更易引发财产损失事故的发生;摩托车在限速较低的路段易引发受伤事故,在限速较高的路段易引发死亡事故,安全设备的使用情况对事故严重程度等级有较大关系。 展开更多
关键词 随机森林(rf) APRIORI算法 缺失值 高速公路 事故致因 数据填补 关联规则
在线阅读 下载PDF
基于SEM和RF的和田绿洲区浅层高氟地下水水质主控因素分析与氟浓度分布预测
3
作者 蒋悦 郑天亮 +3 位作者 李景吉 杨晴雯 黄振富 王双成 《安全与环境工程》 北大核心 2025年第2期264-272,共9页
高氟地下水是全球广泛分布的环境地质问题,本研究基于结构方程模型(SEM)和随机森林(RF)算法开展新疆和田绿洲区浅层高氟地下水水质主控因素及氟浓度分布预测研究。结果表明:干旱气候条件下矿物溶解(β=0.99)及离子交换作用(β=0.68)对... 高氟地下水是全球广泛分布的环境地质问题,本研究基于结构方程模型(SEM)和随机森林(RF)算法开展新疆和田绿洲区浅层高氟地下水水质主控因素及氟浓度分布预测研究。结果表明:干旱气候条件下矿物溶解(β=0.99)及离子交换作用(β=0.68)对地下水水质具有重要贡献,与地下水矿物饱和指数、氯碱指数及Gibbs模型分析结果一致;基于RF算法构建的预测模型指示浅层高氟地下水主要分布于绿洲区中部,特征变量贡献度分析表明蒸发浓缩作用以及碱性pH值条件是高氟地下水形成的重要调控因素。研究结果可为和田绿洲区浅层高氟地下水的分布预测及环境调控机制提供新认识,也可为区域安全供水战略提供指导。 展开更多
关键词 和田绿洲区 浅层高氟地下水 结构方程模型(SEM) 随机森林(rf)算法 水质评价与预测
在线阅读 下载PDF
基于RF-SVR数控机床主轴热误差建模
4
作者 唐盛智 吕军 杜正春 《组合机床与自动化加工技术》 北大核心 2025年第6期1-5,12,共6页
为了进一步提高主轴热误差模型的预测精度和鲁棒性,针对变工况下存在的噪声影响,提出了随机森林结合支持向量回归机的数控机床主轴热误差预测模型。以配备了机械主轴的三轴立式加工中心VMC850E为实验对象,设计了恒定转速和变转速两种实... 为了进一步提高主轴热误差模型的预测精度和鲁棒性,针对变工况下存在的噪声影响,提出了随机森林结合支持向量回归机的数控机床主轴热误差预测模型。以配备了机械主轴的三轴立式加工中心VMC850E为实验对象,设计了恒定转速和变转速两种实验,连续采集温度和主轴轴向伸长量数据,首先通过随机森林算法对各温度变量进行特征重要性分析,然后将温度变量数据导入支持向量回归机模型并记录该组温度变量对应的模型预测精度,接着每次消除重要性最低的温度变量且重复上述步骤直到仅仅剩下最后一个温度变量,再比较不同温度变量组合下的模型预测精度并选出最终的关键温度变量,随机森林和极端随机树模型通过同样的方法最终得到相同的关键温度变量,最后将关键温度变量的数据导入模型对热误差进行预测,通过和随机森林、极端随机树模型进行比较,提出的热误差模型具有更高的预测精度和更强的鲁棒性,验证了所提出的的随机森林结合支持向量回归机模型的优越性。 展开更多
关键词 热误差 随机森林 极端随机树 随机森林结合支持向量回归机
在线阅读 下载PDF
基于BO-RF回归预测的海水柱塞泵配流阀结构参数优化研究
5
作者 周广金 国凯 +1 位作者 孙杰 黄晓明 《机电工程》 北大核心 2025年第4期618-627,共10页
海水柱塞泵采用阀配流方式可以提高其密封性能,保证其具有较高的输出压力。针对配流阀结构参数设计不合理,导致阀芯运动滞后和容积效率降低的问题,提出了一种贝叶斯优化(BO)与随机森林算法(RF)相结合的海水柱塞泵配流阀结构参数优化方... 海水柱塞泵采用阀配流方式可以提高其密封性能,保证其具有较高的输出压力。针对配流阀结构参数设计不合理,导致阀芯运动滞后和容积效率降低的问题,提出了一种贝叶斯优化(BO)与随机森林算法(RF)相结合的海水柱塞泵配流阀结构参数优化方法。首先,利用AMESim软件搭建了海水泵液压系统仿真模型,利用试验验证了仿真模型的准确性,分别分析了吸、排液阀的弹簧刚度、弹簧预紧力、阀芯质量对阀芯滞后以及容积效率的影响;然后,基于仿真获得的配流阀结构参数与对应输出流量的数据,对比分析了贝叶斯优化随机森林(BO-RF)模型、粒子群优化随机森林(PSO-RF)模型、反向传播神经网络(BPNN)模型和随机森林(RF)模型的回归预测结果,以BO-RF模型为回归预测模型,利用遗传算法优化了配流阀结构参数,并获得了结构参数最优解;最后,对优化后的配流阀结构参数进行了仿真分析。研究结果表明:吸、排液阀的弹簧刚度、弹簧预紧力增大能够减小阀芯滞后,提高容积效率,参数增大到临界值后,容积效率会随参数增大而降低;吸、排液阀的阀芯质量增大会增大阀芯滞后,减小容积效率;BO-RF模型的均方根误差(RMSE)、平均绝对百分比误差(MAPE)、决定系数(R^(2))均优于RF、PSO-RF和BPNN模型,其回归预测准确度更高;对于优化后的结果进行仿真可得:容积效率较原结构提高了4.7%。该模型适用于配流阀结构参数预测和优化问题,可为提高柱塞泵容积效率提供参考。 展开更多
关键词 三柱塞曲柄连杆式高压海水柱塞泵 容积效率降低 阀芯运动滞后 贝叶斯优化随机森林回归预测模型 粒子群优化随机森林 弹簧刚度和预紧力 阀芯质量
在线阅读 下载PDF
基于RF-XGBoost算法的无人机多回合攻防博弈决策
6
作者 邹世培 王玉惠 刘鸿睿 《系统工程与电子技术》 北大核心 2025年第2期518-526,共9页
为解决不平衡空战数据集下的无人机多回合博弈对抗问题,提出一种随机森林-极限梯度提升(random forest-eXtreme gradient boosting, RF-XGBoost)算法以进行攻防博弈决策研究。通过分析红蓝双方的运动状态和空战信息,建立支付矩阵模型,... 为解决不平衡空战数据集下的无人机多回合博弈对抗问题,提出一种随机森林-极限梯度提升(random forest-eXtreme gradient boosting, RF-XGBoost)算法以进行攻防博弈决策研究。通过分析红蓝双方的运动状态和空战信息,建立支付矩阵模型,利用线性归纳法求解当前博弈纳什均衡解和期望收益,以蓝方最终获胜作为博弈对抗是否停止的判断条件。在博弈对抗过程中,首先基于随机森林(random forest, RF)算法对空战数据集进行特征降维以提高空战决策的实时性,然后提出改进的XGBoost算法来处理不平衡数据集,将其用于确定最优机动动作以提高机动决策准确率和提升蓝方对抗态势,并得到下一回合的红蓝空战信息;之后,根据下一回合的支付矩阵模型重新计算纳什均衡解和期望收益,直至蓝方获胜;最后,通过仿真验证所提算法的可行性和有效性。 展开更多
关键词 无人机 随机森林 极限梯度提升 多回合博弈
在线阅读 下载PDF
基于G1-RF组合赋权云模型的下向分层开采充填体稳定性评价
7
作者 何玉珍 王文杰 陈仲杰 《中国安全科学学报》 北大核心 2025年第4期165-172,共8页
为解决下向分层开采充填体稳定性风险评估过程中指标模糊性问题,构建充填体稳定性评估模型。首先,选取充填体黏聚力、暴露面积、应力比等12项充填体稳定性影响因素作为风险评价指标,建立评价指标体系;其次,引入云模型理论计算各指标云... 为解决下向分层开采充填体稳定性风险评估过程中指标模糊性问题,构建充填体稳定性评估模型。首先,选取充填体黏聚力、暴露面积、应力比等12项充填体稳定性影响因素作为风险评价指标,建立评价指标体系;其次,引入云模型理论计算各指标云数字特征,利用序关系分析(G1)-随机森林(RF)博弈论组合赋权法获取综合权重,构建基于G1-RF博弈论组合赋权云模型的下向分层开采充填体稳定性综合评价模型,确定矿山充填体稳定性风险等级;最后,将该评价方法应用于实际工程中矿山充填体稳定性分析。结果表明:采用该综合评价方法,能够有效解决风险评估过程中指标模糊性与弱关联性问题,更准确快速地评价充填体的稳定性,并且实现风险等级的可视化。 展开更多
关键词 序关系分析法(G1) 随机森林(rf) 组合赋权 云模型 下向分层开采 充填体稳定性
在线阅读 下载PDF
基于WOA-RF算法的船舶柴发配电系统故障诊断
8
作者 李维波 高峰 +3 位作者 肖朋 黄康政 阮道杰 高俊卓 《中国舰船研究》 北大核心 2025年第2期77-88,共12页
[目的]船舶柴发配电系统对航行稳定性至关重要,海洋工作环境的严苛性致使其故障频发,为此提出一种基于鲸鱼优化算法的优化随机森林(WOA-RF)算法,用以开展船舶柴发配电系统故障诊断。[方法]首先,基于Matlab/Simulink仿真软件搭建船舶柴... [目的]船舶柴发配电系统对航行稳定性至关重要,海洋工作环境的严苛性致使其故障频发,为此提出一种基于鲸鱼优化算法的优化随机森林(WOA-RF)算法,用以开展船舶柴发配电系统故障诊断。[方法]首先,基于Matlab/Simulink仿真软件搭建船舶柴发配电系统模型,采集其故障工况和正常工况的数据;然后,对收集的数据进行预处理以提取时域特征,并使用随机森林算法提取重要特征,从而减少数据维度;最后,使用WOA优化后的随机森林模型对船舶柴发配电系统运行数据进行故障识别、诊断和分类。[结果]仿真模拟试验表明:采用WOA-RF算法识别故障状态和正常状态的准确率为100%,区分12种故障类型的诊断准确率为98.26%;在原始数据集中,与9种不同算法对比,WOA-RF算法的准确率最低提升了4.86%,最高提升了34.37%;在添加10dB噪声数据后,与6种不同算法对比,WOA-RF算法的准确率最低提升了2.43%,最高提升了18.40%。[结论]基于WOA-RF算法的故障诊断方法在复杂海洋环境下展示了优异的准确性和鲁棒性,结果可为船舶电力系统故障的可靠识别提供参考。 展开更多
关键词 船舶柴发配电系统 故障分析 故障诊断 鲸鱼优化算法 随机森林算法 SIMULINK模型 特征提取
在线阅读 下载PDF
基于多源影像数据与Otsu-RF方法的太湖蓝藻水华识别及监测
9
作者 郑超 童旭东 +3 位作者 祝善友 张丽娟 殷凌锋 林佳余 《测绘通报》 北大核心 2025年第5期1-7,共7页
针对单一传感器及单一蓝藻提取方法用于太湖蓝藻水华长时序监测的局限性,本文基于2014—2023年高分一号(GF-1)与Landsat 8多源影像数据,采用归一化植被指数(NDVI)方法、随机森林(RF)方法、基于最大类间方差确定样本(大津法)的随机森林(O... 针对单一传感器及单一蓝藻提取方法用于太湖蓝藻水华长时序监测的局限性,本文基于2014—2023年高分一号(GF-1)与Landsat 8多源影像数据,采用归一化植被指数(NDVI)方法、随机森林(RF)方法、基于最大类间方差确定样本(大津法)的随机森林(Otsu-RF)方法提取太湖蓝藻,通过对比分析确定蓝藻最优提取方法,揭示近10年太湖蓝藻水华的时空变化特征。结果表明:①Otsu-RF方法在不同影像下提取蓝藻水华的精度最高,且能够更有效地提取零星分布的蓝藻;②与GF-1图像相比,Landsat 8融合影像上的蓝藻像元纹理更加清晰,藻华提取结果更为精确;③2014—2023年太湖夏、秋季蓝藻水华爆发强度较高,春冬季较弱,其中2017、2020年太湖藻华爆发尤为严重,全域年平均蓝藻面积都超过了300 km 2;④太湖蓝藻水华春、夏、秋季多爆发在竺山湖湾、梅梁湖湾、西部湖区沿岸区域,冬季多发生在南部湖区沿岸区域。 展开更多
关键词 太湖 蓝藻水华 多源影像 随机森林 最大类间方差 时空变化
在线阅读 下载PDF
基于RF-GWO的水利工程地质渗透系数智能反演分析 被引量:4
10
作者 雷艳 温立峰 +1 位作者 赵明仓 殷乔刚 《水资源与水工程学报》 CSCD 北大核心 2024年第2期139-148,共10页
地质渗透系数是准确分析水利工程渗流的关键参数。针对传统反演方法计算效率低、精度差的问题,采用有限元正演模型和正交试验设计构建渗透系数反演样本集,建立了基于随机森林(RF)算法的渗流计算代理模型;在此基础上,引入灰狼优化(GWO)算... 地质渗透系数是准确分析水利工程渗流的关键参数。针对传统反演方法计算效率低、精度差的问题,采用有限元正演模型和正交试验设计构建渗透系数反演样本集,建立了基于随机森林(RF)算法的渗流计算代理模型;在此基础上,引入灰狼优化(GWO)算法,提出了基于RF-GWO的渗透系数智能反演方法,并以Z抽水蓄能电站为研究案例进行了验证。结果表明:RF模型对各钻孔水位预测结果均接近实测值,性能优于CART和BP模型;GWO可搜寻到地质最佳渗透系数,钻孔水位反演结果合理,相对误差最大为0.42%,精度满足工程要求,计算的天然渗流场分布形态也符合一般山体渗流场分布规律。建立的反演模型能够快速准确地推断工程区地层渗透系数,具有实际工程应用价值。 展开更多
关键词 地质渗透系数 反演分析 正交试验设计 随机森林 灰狼优化
在线阅读 下载PDF
基于LSTM-RF的电动钻机绞车齿轮箱故障诊断 被引量:4
11
作者 刘光星 马一豪 《振动与冲击》 EI CSCD 北大核心 2024年第21期156-162,230,共8页
针对提高石油电动钻机绞车齿轮箱故障诊断的准确性和效率,提出了一种基于长短期记忆网络(long short-term memory,LSTM)和随机森林(random forest,RF)融合模型。首先,运用LSTM能够从大规模数据中学习复杂特征,将这些特征作为随机森林的... 针对提高石油电动钻机绞车齿轮箱故障诊断的准确性和效率,提出了一种基于长短期记忆网络(long short-term memory,LSTM)和随机森林(random forest,RF)融合模型。首先,运用LSTM能够从大规模数据中学习复杂特征,将这些特征作为随机森林的输入。然后,通过随机森林处理非线性和高维数据以及对特征的分类,以实现对齿轮不同故障状态的识别。最后,利用电动钻机绞车齿轮箱运行过程中的实时数据,建立了一个包含多种齿轮故障类型的综合数据集。试验结果表明,LSTM齿轮故障诊断准确率为94.67%,RF齿轮故障诊断准确率为94.34%,支持向量机齿轮故障诊断准确率为82.00%,K近邻齿轮故障诊断准确率88.33%,而融合模型LSTM-RF在齿轮故障诊断准确率方面达到了98.33%,克服了单一模型的局限性,提高了诊断准确性。研究表明了融合模型具有更优的电动钻机绞车齿轮箱故障诊断能力。 展开更多
关键词 电动钻机 齿轮箱 故障诊断 长短期记忆网络(LSTM) 随机森林(rf)算法
在线阅读 下载PDF
基于RF-SFLA-SVM的装配式建筑高空作业工人不安全行为预警 被引量:1
12
作者 王军武 何娟娟 +3 位作者 宋盈辉 刘一鹏 陈兆 郭婧怡 《中国安全科学学报》 CAS CSCD 北大核心 2024年第3期1-8,共8页
为有效预警装配式建筑高空作业工人不安全行为的发生趋势或状态,增强对装配式建筑工人不安全行为(PBWUBs)的管控,采用随机森林(RF)-混合蛙跳算法(SFLA)-支持向量机(SVM)模型,开展工人不安全行为预警研究。首先,采用SHEL模型分析处于高... 为有效预警装配式建筑高空作业工人不安全行为的发生趋势或状态,增强对装配式建筑工人不安全行为(PBWUBs)的管控,采用随机森林(RF)-混合蛙跳算法(SFLA)-支持向量机(SVM)模型,开展工人不安全行为预警研究。首先,采用SHEL模型分析处于高空作业危险中的PBWUBs的影响因素,并通过RF确定关键预警指标;然后,采用SFLA对SVM的参数进行寻优改进;最后,利用RF-SFLA-SVM预警高空作业PBWUBs,提出应对措施,并与其他预警模型对比。研究结果表明:基于RF-SFLA-SVM预警高空作业PBWUBs,准确率最高,为91.67%,与其他模型的预警性能相比,最高提升14%。研究结果可为高空作业PBWUBs的防控提供参考。 展开更多
关键词 随机森林(rf) 蛙跳算法(SFLA) 支持向量机(SVM) 装配式建筑 高空作业 不安全行为
在线阅读 下载PDF
基于LSTM、RF、SVR三种机器学习方法的径流预测研究 被引量:7
13
作者 胡乐怡 付晓雷 +3 位作者 蒋晓蕾 章丽萍 章雨晨 钟奇 《水文》 CSCD 北大核心 2024年第5期17-24,共8页
为探究不同预报方案对机器学习模型径流预测的影响,以淮河王家坝~蒋家集~润河集区间流域为例,设计了七种径流预测方案,采用LSTM(长短期记忆神经网络)、RF(随机森林)以及SVR(支持向量回归)三种机器学习模型进行径流预测。研究结果表明:(1... 为探究不同预报方案对机器学习模型径流预测的影响,以淮河王家坝~蒋家集~润河集区间流域为例,设计了七种径流预测方案,采用LSTM(长短期记忆神经网络)、RF(随机森林)以及SVR(支持向量回归)三种机器学习模型进行径流预测。研究结果表明:(1)三种机器学习模型对降雨信息的敏感程度不同,且采用同时考虑径流影响因素以及前期历史径流的方案预测效果最佳,但随着预见期的延长,前期历史径流的重要性逐渐降低;(2)三种机器学习模型在不同预见期的径流预测表现有所差异:三种机器学习模型在预见期为1 d时预测精度均较高;当预见期为2~4 d时,SVR模型的预测效果较好;RF模型在预见期为5~7 d时预测精度较高。研究可为后续基于机器学习的径流预测提供参考。 展开更多
关键词 长短期记忆神经网络 随机森林 支持向量回归 径流预测 预见期 预报方案
在线阅读 下载PDF
基于RSIV-RF模型的凉山州泥石流易发性评价 被引量:6
14
作者 饶姗姗 冷小鹏 《地质科技通报》 CAS CSCD 北大核心 2024年第1期275-287,共13页
针对随机森林(RF)模型进行泥石流易发性评价过程中存在连续型因子依靠主观意识分级、随机选取的非泥石流样本准确度较低等问题,以位于四川西南部的凉山彝族自治州为研究区,提出基于统计学先验模型抽样的随机森林对研究区进行泥石流易发... 针对随机森林(RF)模型进行泥石流易发性评价过程中存在连续型因子依靠主观意识分级、随机选取的非泥石流样本准确度较低等问题,以位于四川西南部的凉山彝族自治州为研究区,提出基于统计学先验模型抽样的随机森林对研究区进行泥石流易发性评价分区。利用累计灾害频率等曲线的相对变化对连续型因子进行分级处理;采用粗糙集理论(RS)和信息量法(IV)计算加权信息量值,划定极低和低易发性区并从中选择负样本数据。通过袋外误差(OOB)变化曲线确定RF模型的最佳树棵数n_estimators和分裂特征数max_features,随后构建加权信息量-随机森林(RSIV-RF)模型预测凉山州泥石流易发性。进一步地,与从全区随机选择非泥石流样本的RF模型开展对比研究。结果表明,训练集和测试集下RSIV-RF模型的准确度分别为0.89,0.83,且对应的ROC曲线的AUC值分别为0.920,0.895,均高于单独的RF模型;RSIV-RF绘制的泥石流易发性评价图与历史灾害分布较为一致,较高和高易发性等级区域占研究区面积比为18.625%,包含了78.57%的泥石流点。性能评估和易发性统计结果均表明基于RSIV-RF能够解决单独模型存在的非泥石样本采样不准确的问题,其泥石流易发性预测精度更高,在凉山州地区泥石流易发性评价研究中具有较好的适应性。 展开更多
关键词 随机森林(rf) 不平衡数据集 加权信息量(RSIV) 泥石流 RSIV-rf模型 凉山州 易发性评价
在线阅读 下载PDF
基于GJO特征量优选的AO-RF的变压器故障诊断模型 被引量:6
15
作者 叶育林 刘森 +6 位作者 黄松 韩晓慧 杜振斌 李彬 吕杰 薛杨 赵春琳 《高压电器》 CAS CSCD 北大核心 2024年第5期99-107,共9页
在变压器故障诊断过程中,进行合理的特征优选,将有助于提高诊断模型的诊断精度,为此,文中提出了一种基于金豺优化算法(golden Jackal optimization,GJO)特征量优选与AO-RF的变压器故障诊断模型。首先,采用GJO对构建的21维变压器油中溶... 在变压器故障诊断过程中,进行合理的特征优选,将有助于提高诊断模型的诊断精度,为此,文中提出了一种基于金豺优化算法(golden Jackal optimization,GJO)特征量优选与AO-RF的变压器故障诊断模型。首先,采用GJO对构建的21维变压器油中溶解气体特征量进行优选;然后,根据GJO得到的特征优选结果,采用天鹰算法(aquila optimizer,AO)优化随机森林(random forest,RF)的变压器故障诊断模型对变压器故障进行诊断,并与不同特征量、不同故障诊断模型的诊断结果进行了对比。实验结果表明:GJO优选特征量相比21维原始特征、三比值法、无编码比值法以及AO优选特征量的故障诊断准确率可提高1.12%~25.78%,kappa系数可提高0.02~0.24;AO-RF故障诊断模型较RF、SVM、ELM、SSA-RF、WOA-RF、GJO-RF模型的诊断准确率可提高1.84%~15.86%,kappa系数可提高0.02~0.16,验证了所提方法的有效性和准确性。 展开更多
关键词 变压器 故障诊断 金豺算法 随机森林 天鹰算法
在线阅读 下载PDF
基于RF建立的双层桥墩矢量式损伤极限状态能力模型 被引量:2
16
作者 郭威佐 王克海 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第3期658-667,共10页
为了确定双层桥墩的抗震能力,基于随机森林(RF)算法构建了双层桥墩的矢量式损伤极限状态能力模型.将地震动激励角视作为一个符合均匀分布的随机变量,通过大量推倒(Pushover)分析构建双层桥墩的能力样本数据库,以训练其能力值预测模型,... 为了确定双层桥墩的抗震能力,基于随机森林(RF)算法构建了双层桥墩的矢量式损伤极限状态能力模型.将地震动激励角视作为一个符合均匀分布的随机变量,通过大量推倒(Pushover)分析构建双层桥墩的能力样本数据库,以训练其能力值预测模型,并利用SHAP进行特征重要性分析.结果表明:双层桥墩的能力阈值不服从对数正态分布,且分布参数明显不同于以往研究的建议值;矢量式损伤极限状态能力模型能有效识别双层桥墩能力的分层现象,决定系数R^(2)>0.95,具有良好的预测性;地震动激励角显著影响双层桥墩的抗震能力.相比于上层墩柱,双层桥墩严重损伤极限状态的目标值更容易受到下层墩柱特征参数的影响,可适当关注下层墩柱属性以增强双层桥墩整体的抗震性能. 展开更多
关键词 桥梁工程 双层桥墩 地震动激励角 随机森林(rf) 可解释性
在线阅读 下载PDF
基于CEEMD-BiLSTM-RFR的短期光伏功率预测 被引量:6
17
作者 冯沛儒 江桂芬 +2 位作者 徐加银 叶剑桥 李生虎 《科学技术与工程》 北大核心 2024年第5期1955-1962,共8页
由于短期光伏预测中气象因素的时间尺度不同,直接分析其对光伏功率的相关性,易忽略时间尺度的影响,进而导致预测模型误差。为提高光伏功率预测精度,构建了预测模型。首先,利用互补集合经验模态分解(complementary empirical mode decomp... 由于短期光伏预测中气象因素的时间尺度不同,直接分析其对光伏功率的相关性,易忽略时间尺度的影响,进而导致预测模型误差。为提高光伏功率预测精度,构建了预测模型。首先,利用互补集合经验模态分解(complementary empirical mode decomposition,CEEMD)将光伏序列进行分解,得到在不同时间尺度上的光伏分量;然后,通过Pearson相关系数分析各光伏分量与空气温度、太阳辐射度、风速、风向和空气湿度的关系,对于强相关分量建立关于气象因素的随机森林回归(random forest regression,RFR)预测模型,弱相关分量直接通过双向长短期记忆网络(bidirectional long short-term memory neural network,BiLSTM)进行预测;并将预测求和输出。通过安徽省蚌埠市光伏电站7月实测数据进行验证,实验结果表明,所提预测模型CEEMD-BiLSTM-RFR相比传统预测模型有较好的预测精度。 展开更多
关键词 光伏功率预测 互补集合经验模态分解 相关性分析 BiLSTM 随机森林回归
在线阅读 下载PDF
基于CNN BiGRU RF模型的TBM掘进参数预测研究 被引量:1
18
作者 王海宾 王永涛 +3 位作者 陈黎涵 侯正涛 刘江 丁自伟 《中国煤炭》 北大核心 2024年第9期80-91,共12页
作为井下巷道掘进的新工法,全断面隧道掘进机(TBM)有显著的经济效益,对TBM的掘进参数进行预测对于确保TBM的掘进效率具有重要意义。对现场获取的TBM数据进行清洗和预处理,利用皮尔逊相关系数法对模型输入特征进行筛选,并构建基于卷积神... 作为井下巷道掘进的新工法,全断面隧道掘进机(TBM)有显著的经济效益,对TBM的掘进参数进行预测对于确保TBM的掘进效率具有重要意义。对现场获取的TBM数据进行清洗和预处理,利用皮尔逊相关系数法对模型输入特征进行筛选,并构建基于卷积神经网络(CNN)优化的双向门控循环单元(BiGRU)神经网络并通过随机森林(RF)进行集成的TBM掘进参数预测模型,实现对TBM掘进参数的预测。研究结果表明:选取与总推力和推进速率关联度最密切的刀盘转速、刀盘扭矩和贯入度作为特征参数;构建的CNN BiGRU RF模型预测掘进参数对总推力和推进速率的拟合优度R 2均值分别为0.950和0.966,均方误差MSE平均值分别为0.750和0.782,均方根误差RMSE平均值分别为0.866和0.885,平均绝对误差MAE平均值分别为1.054和1.007,并且回归评价指标MSE、RMSE、MAE相较于CNN BiGRU模型,分别降低2.497、0.966和0.386,R 2提升23.4%,证明CNN BiGRU RF模型的预测准确度和泛化性最高。该研究可为实际工程掘进参数预测提供指导,有助于推动TBM在煤矿的推广,保障TBM的施工进度。 展开更多
关键词 CNN BiGRU rf模型 TBM掘进参数 皮尔逊相关系数法 卷积神经网络 双向门控循环单元神经网络 随机森林 时间序列预测
在线阅读 下载PDF
基于CF与优化RF模型耦合的泰山地区地质灾害易发性评价 被引量:1
19
作者 咸利民 季民 +1 位作者 刘法军 李强 《水土保持通报》 CSCD 北大核心 2024年第5期134-143,共10页
[目的]针对泰山地区地质灾害频发这一现状,研究并构建地质灾害易发性评价模型,为该地区的地质灾害预防与治理工作提供参考。[方法]以泰山地区为研究区,采用确定性系数模型与粒子群算法优化RF模型耦合的方法,完成对研究区的地质灾害易发... [目的]针对泰山地区地质灾害频发这一现状,研究并构建地质灾害易发性评价模型,为该地区的地质灾害预防与治理工作提供参考。[方法]以泰山地区为研究区,采用确定性系数模型与粒子群算法优化RF模型耦合的方法,完成对研究区的地质灾害易发性评价。该方法是利用确定性系数(CF)模型计算影响因子对地质灾害的敏感值,作为模型训练的属性值,引入粒子群算法对随机森林(RF)模型进行参数寻优,提高模型对地质灾害的预测精度和准确度。选取坡度、距道路距离、土地利用类型、植被指数等11个影响因子,采用皮尔逊相关系数法和多重共线性检查进行影响因子筛选择优,绘制ROC和PR曲线对训练模型进行精度评价。[结果]CF-PSO-RF耦合模型相比单一SVR、单一RF和CF-PSO-SVR模型的极高易发区面积比例分别提高10.55%,10.04%和5.08%,AUC值分别提高14%,5.1%和1.7%,AP精度分别提高了11.7%,4.4%,1.2%。预测结果显示,泰山地区的极高、高易发区主要位于泰山景区、岱岳区北部等地形起伏和坡度较大的区域,面积所占比例为28.05%,涵盖了60.1%的地质灾害点;相反,低、极低易发区主要分布在建设用地、农田等地势平坦区域,面积比例为59.26%。[结论]将确定性系数模型与优化后RF模型耦合,相比单一模型精度有进一步的提升,又优于CF-PSO-SVR模型精度,评价结果符合实际情况。 展开更多
关键词 地质灾害易发性评价 粒子群算法 确定性系数模型(CF) 随机森林模型(rf) 支持向量机模型(SVM) 泰山地区
在线阅读 下载PDF
基于RF和MLR的土壤重金属影响因素分析及生物有效性预测 被引量:4
20
作者 潘泳兴 陈盟 +1 位作者 王櫹橦 刘楠 《农业环境科学学报》 CAS CSCD 北大核心 2024年第4期845-857,共13页
为探究影响土壤中重金属累积和生物有效性的因素,以桂北地区某铅锌矿流域为研究对象,综合运用单因子指数法、风险评价编码法(RAC)、多元线性回归模型(MLR)和随机森林模型(RF)进行土壤重金属(Pb、Zn、Cu和Cr)累积影响因素分析及生物有效... 为探究影响土壤中重金属累积和生物有效性的因素,以桂北地区某铅锌矿流域为研究对象,综合运用单因子指数法、风险评价编码法(RAC)、多元线性回归模型(MLR)和随机森林模型(RF)进行土壤重金属(Pb、Zn、Cu和Cr)累积影响因素分析及生物有效性预测。结果表明:研究区Cr含量无超标且空间分布相对均匀(变异系数为0.51);Cu、Pb和Zn的含量均值(分别为52.58、280.31 mg·kg^(-1)和654.71 mg·kg^(-1))均大于广西西江流域土壤重金属背景值,在思的河山前和地下河入口处全量和生物有效性均较大,对土壤生态环境具有一定风险;对于重金属全量分布和生物有效态的影响因素,阳离子交换量(CEC)、黏粒(Clay)、土壤有机质(SOM)和铁铝氧化物对Cr影响较大,SOM、Clay、pH和铁铝氧化物对Cu影响较大,pH、电导率(EC)和Clay对Pb影响较大,CEC、pH、土壤质地和铁铝氧化物对Zn影响较大;生物有效性预测结果显示RF和MLR均可较好地预测土壤重金属的全量与次生相,其中RF预测的R2区间为0.44~0.93,MLR预测的R2区间为0.30~0.72,RF预测结果表现更为准确。 展开更多
关键词 土壤重金属 影响因素 生物有效性预测 随机森林模型(rf) 多元线性回归模型(MLR)
在线阅读 下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部