A novel and efficient approach for detecting wood texture orientation by computer was presented. Four Matlab functions were tried to describe the relative position and orientation of wood texture pixels, to detect tex...A novel and efficient approach for detecting wood texture orientation by computer was presented. Four Matlab functions were tried to describe the relative position and orientation of wood texture pixels, to detect texture shape and to create skeletal lines image of wood texture, and BWMORPH function was found the best one. Then by Radon transform, it generated a signature composed of 180 values, each value summing up the size of texture lines that are shaped along that angle, and a two dimensional curve plot was drawn to represent the texture orientation of wood. Furthermore, it analyzed texture orientations of forty species as well as their general statistic laws, classified by softwood, hardwood, radial section and tangential section, and the results showed that texture orientation laws described by Radon trans- form plot and their extracting datum were in accord with the impression of wood texture that people possessed in daily life, which con- firmed the validity of this new approach and their appealing utilization potentials.展开更多
The singular value decomposition is derived when the Radon transform is restricted to functions which are square integrable on the unit ball in R-n with respect to the weight W-lambda(x). It fulfilles mainly by means ...The singular value decomposition is derived when the Radon transform is restricted to functions which are square integrable on the unit ball in R-n with respect to the weight W-lambda(x). It fulfilles mainly by means of the projection-slice theorem. The range of the Radon transform is spanned by products of Gegenbauer polynomials and spherical harmonics. The inverse transform of the those basis functions are given. This immediately leads to an inversion formula by series expansion and range characterizations.展开更多
In this work, the image reconstruction in π-scheme short-scan single-photon emission computed tomography (SPECT) with nonuniform attenuation is derived in its most general form when π-scheme short-scan SPECT entai...In this work, the image reconstruction in π-scheme short-scan single-photon emission computed tomography (SPECT) with nonuniform attenuation is derived in its most general form when π-scheme short-scan SPECT entails data acquisition over disjoint angular intervals without conjugate views totaling to π radians. The reconstruction results are based on decomposition of Novikov's inversion operator into three parts bounded in the L2 sense. The first part involves the measured partial data; the second part is a skew-symmetric operator; the third part is a symmetric and compact contribution. It is showed firstly that the operators involved belong to L(L^2(B). Furthermore numerical simulations are conducted to demonstrate the effectiveness of the developed method.展开更多
This paper proves a new theorem on the relationship between optical field Wigner function's two-parameter Radon transform and optical Fresnel transform of the field, i.e., when an input field ψ (x') propagates th...This paper proves a new theorem on the relationship between optical field Wigner function's two-parameter Radon transform and optical Fresnel transform of the field, i.e., when an input field ψ (x') propagates through an optical [D (-B) (-C) A] system, the energy density of the output field is equal to the Radon transform of the Wigner function of the input field, where the Radon transform parameters are D, B. It prove this theorem in both spatial-domain and frequency-domain, in the latter case the Radon transform parameters are A, C.展开更多
The loping OS-EM iteration is a numerically efficient regularization method for solving ill-posed problems. In this article we investigate the loping OS-EM iterative method in connection with the circular Radon transf...The loping OS-EM iteration is a numerically efficient regularization method for solving ill-posed problems. In this article we investigate the loping OS-EM iterative method in connection with the circular Radon transform. We show that the proposed method converges weakly for the noisy data. Numerical tests are presented for a linear problem related to photoacoustic tomography.展开更多
The generalization of tomographic maps to byperplanes is considered. We find that the Radon transform of the Wigner operator in multi-dimensional phase space leads to a normally ordered operator in binomial distributi...The generalization of tomographic maps to byperplanes is considered. We find that the Radon transform of the Wigner operator in multi-dimensional phase space leads to a normally ordered operator in binomial distribution-a mixed-state density operator. Reconstruction of the Wigner operator is also feasible. The normally ordered form and the Weyl ordered form of the Wigner operator are used in our derivation. The operator quantum tomography theory is expressed in terms of some operator identities, with the merit of revealing the essence of the theory in a simple and concise way.展开更多
In the research of bistatic tomography imaging of translating object, we get a class of generalized Radon transformation. In this paper, first we prove the existence and uniguenness of its solution in theory and poin...In the research of bistatic tomography imaging of translating object, we get a class of generalized Radon transformation. In this paper, first we prove the existence and uniguenness of its solution in theory and point out this problem is ill-posed with an especial example.Secondly by means of multiplicative interpolation functions to approximate models, we constracted regularizing functional. Finally we simplify calculation by Fourier transformation,get regularizing solutions that converge to accurate solution.展开更多
The local reconstruction from truncated projection data is one area of interest in image reconstruction for com- puted tomography (CT), which creates the possibility for dose reduction. In this paper, a filtered-bac...The local reconstruction from truncated projection data is one area of interest in image reconstruction for com- puted tomography (CT), which creates the possibility for dose reduction. In this paper, a filtered-backprojection (FBP) algorithm based on the Radon inversion transform is presented to deal with the three-dimensional (3D) local recon- struction in the circular geometry. The algorithm achieves the data filtering in two steps. The first step is the derivative of projections, which acts locally on the data and can thus be carried out accurately even in the presence of data trun- cation. The second step is the nonlocal Hilbert filtering. The numerical simulations and the real data reconstructions have been conducted to validate the new reconstruction algorithm. Compared with the approximate truncation resistant algorithm for computed tomography (ATRACT), not only it has a comparable ability to restrain truncation artifacts, but also its reconstruction efficiency is improved. It is about twice as fast as that of the ATRACT. Therefore, this work provides a simple and efficient approach for the approximate reconstruction from truncated projections in the circular cone-beam CT.展开更多
文摘A novel and efficient approach for detecting wood texture orientation by computer was presented. Four Matlab functions were tried to describe the relative position and orientation of wood texture pixels, to detect texture shape and to create skeletal lines image of wood texture, and BWMORPH function was found the best one. Then by Radon transform, it generated a signature composed of 180 values, each value summing up the size of texture lines that are shaped along that angle, and a two dimensional curve plot was drawn to represent the texture orientation of wood. Furthermore, it analyzed texture orientations of forty species as well as their general statistic laws, classified by softwood, hardwood, radial section and tangential section, and the results showed that texture orientation laws described by Radon trans- form plot and their extracting datum were in accord with the impression of wood texture that people possessed in daily life, which con- firmed the validity of this new approach and their appealing utilization potentials.
文摘The singular value decomposition is derived when the Radon transform is restricted to functions which are square integrable on the unit ball in R-n with respect to the weight W-lambda(x). It fulfilles mainly by means of the projection-slice theorem. The range of the Radon transform is spanned by products of Gegenbauer polynomials and spherical harmonics. The inverse transform of the those basis functions are given. This immediately leads to an inversion formula by series expansion and range characterizations.
基金supported by the National Natural Science Foundation of China(61271398)K.C.Wong Magna Fund in Ningbo University
文摘In this work, the image reconstruction in π-scheme short-scan single-photon emission computed tomography (SPECT) with nonuniform attenuation is derived in its most general form when π-scheme short-scan SPECT entails data acquisition over disjoint angular intervals without conjugate views totaling to π radians. The reconstruction results are based on decomposition of Novikov's inversion operator into three parts bounded in the L2 sense. The first part involves the measured partial data; the second part is a skew-symmetric operator; the third part is a symmetric and compact contribution. It is showed firstly that the operators involved belong to L(L^2(B). Furthermore numerical simulations are conducted to demonstrate the effectiveness of the developed method.
基金supported by the National Natural Science Foundation of China (Grant Nos 10775097 and 10874174)
文摘This paper proves a new theorem on the relationship between optical field Wigner function's two-parameter Radon transform and optical Fresnel transform of the field, i.e., when an input field ψ (x') propagates through an optical [D (-B) (-C) A] system, the energy density of the output field is equal to the Radon transform of the Wigner function of the input field, where the Radon transform parameters are D, B. It prove this theorem in both spatial-domain and frequency-domain, in the latter case the Radon transform parameters are A, C.
基金supported by the National Natural Science Foundation of China(61271398)K.C.Wong Magna Fund in Ningbo UniversityNatural Science Foundation of Ningbo City(2010A610102)
文摘The loping OS-EM iteration is a numerically efficient regularization method for solving ill-posed problems. In this article we investigate the loping OS-EM iterative method in connection with the circular Radon transform. We show that the proposed method converges weakly for the noisy data. Numerical tests are presented for a linear problem related to photoacoustic tomography.
基金supported by National Natural Science Foundation of China (Grant No 10874174)the President Foundation of Chinese Academy of Sciences
文摘The generalization of tomographic maps to byperplanes is considered. We find that the Radon transform of the Wigner operator in multi-dimensional phase space leads to a normally ordered operator in binomial distribution-a mixed-state density operator. Reconstruction of the Wigner operator is also feasible. The normally ordered form and the Weyl ordered form of the Wigner operator are used in our derivation. The operator quantum tomography theory is expressed in terms of some operator identities, with the merit of revealing the essence of the theory in a simple and concise way.
文摘In the research of bistatic tomography imaging of translating object, we get a class of generalized Radon transformation. In this paper, first we prove the existence and uniguenness of its solution in theory and point out this problem is ill-posed with an especial example.Secondly by means of multiplicative interpolation functions to approximate models, we constracted regularizing functional. Finally we simplify calculation by Fourier transformation,get regularizing solutions that converge to accurate solution.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2012AA011603)
文摘The local reconstruction from truncated projection data is one area of interest in image reconstruction for com- puted tomography (CT), which creates the possibility for dose reduction. In this paper, a filtered-backprojection (FBP) algorithm based on the Radon inversion transform is presented to deal with the three-dimensional (3D) local recon- struction in the circular geometry. The algorithm achieves the data filtering in two steps. The first step is the derivative of projections, which acts locally on the data and can thus be carried out accurately even in the presence of data trun- cation. The second step is the nonlocal Hilbert filtering. The numerical simulations and the real data reconstructions have been conducted to validate the new reconstruction algorithm. Compared with the approximate truncation resistant algorithm for computed tomography (ATRACT), not only it has a comparable ability to restrain truncation artifacts, but also its reconstruction efficiency is improved. It is about twice as fast as that of the ATRACT. Therefore, this work provides a simple and efficient approach for the approximate reconstruction from truncated projections in the circular cone-beam CT.