期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Aggregation‑Induced Emissive Scintillators:A New Frontier for Radiation Detection and Imaging
1
作者 Xinyi Li Jiafu Yu +2 位作者 Yinghao Fan Yuting Gao Guangda Niu 《Nano-Micro Letters》 2025年第7期190-205,共16页
Aggregation-induced emission(AIE)is a unique phenomenon where certain organic materials exhibit enhanced luminescence in their aggregated states,overcoming the typical quenching observed in conventional organic materi... Aggregation-induced emission(AIE)is a unique phenomenon where certain organic materials exhibit enhanced luminescence in their aggregated states,overcoming the typical quenching observed in conventional organic materials.Since its discovery in 2001,AIE has driven significant advances in fields like OLEDs and biological imaging,earning recognition in fundamental research.However,its application in high-energy radiation detection remains underexplored.Organic scintillators,though widely used,face challenges such as low light yield and poor radiation attenuation.AIE materials offer promising solutions by improving light yield,response speed,and radiation attenuation.This review summarizes the design strategies behind AIE scintillators and their very recent applications in X-ray,γ-ray,and fast neutron detection.We highlight their advantages in enhancing detection sensitivity,reducing background noise,and achieving high-resolution imaging.By addressing the current challenges,we believe AIE materials will play a pivotal role in advancing future radiation detection and imaging technologies. 展开更多
关键词 Aggregation-induced emission Scintillators radiation detection radiation imaging
在线阅读 下载PDF
Isomeric fluorescence sensors for wide range detection of ionizing radiations
2
作者 Jimin Han Tianyu Yang +1 位作者 Li Yang Yuanjian Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期247-257,共11页
In order to achieve a wider range of ionizing radiations detection,novel fluorescence sensing materials have been developed that utilize the fluorescence enhancement phenomenon caused by the intramolecular photoinduce... In order to achieve a wider range of ionizing radiations detection,novel fluorescence sensing materials have been developed that utilize the fluorescence enhancement phenomenon caused by the intramolecular photoinduced electron transfer(PET)effect.Two perylene diimide isomers PDI-P and PDI-B were designed and synthesized,and their molecular structures were characterized by high-resolution Fourier transform mass spectrometry(HRMS),nuclear magnetic resonance hydrogen and carbon spectroscopy(~1H and~(13)C NMR).The interaction between ionizing radiation and fluorescent molecules was simulated by HCl titration.The results show that combining PDIs and HCl can improve fluorescence through the retro-PET process.Despite the similarities in chemical structures,the fluorescent enhancement multiple of PDI-B with aromatic amine as electron donor is much higher than that of PDI-P with alkyl amine.In the direct irradiation experiments of ionizing radiation,the emission enhancement multiples of PDI-P and PDI-B are 2.01 and 45.4,respectively.Furthermore,density functional theory(DFT)and time-dependent density functional theory(TDDFT)calculations indicate that the HOMO and HOMO-1 energy ranges of PDI-P and PDI-B are 0.54 e V and 1.13 e V,respectively.A wider energy range has a stronger driving force on electrons,which is conducive to fluorescence quenching.Both femtosecond transient absorption spectroscopy(fs-TAS)and transient fluorescence spectroscopy(TFS)tests show that PDI-B has shorter charge separation lifetime and higher electron transfer rate constant.Although both isomers can significantly reduce LOD during PET process,PDI-B with aromatic amine has a wider detection range of 0.118—240 Gy due to its larger emission enhancement,which is a leap of three orders of magnitude.It breaks through the detection range of gamma radiation reported in existing studies,and provides theoretical support for the further study of sensitive and effective new materials for ionizing radiation detection. 展开更多
关键词 Perylene imide Intramolecular PET Ionizing radiation detection Fluorescence sensor ISOMERS
在线阅读 下载PDF
Development of gated fiber detectors for laser-induced strong electromagnetic pulse environments 被引量:8
3
作者 Po Hu Zhi-Guo Ma +5 位作者 Kai Zhao Guo-Qiang Zhang De-Qing Fang Bao-Ren Wei Chang-Bo Fu Yu-Gang Ma 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第6期36-44,共9页
With the development of laser technologies,nuclear reactions can happen in high-temperature plasma environments induced by lasers and have attracted a lot of attention from different physical disciplines.However,studi... With the development of laser technologies,nuclear reactions can happen in high-temperature plasma environments induced by lasers and have attracted a lot of attention from different physical disciplines.However,studies on nuclear reactions in plasma are still limited by detecting technologies.This is mainly due to the fact that extremely high electromagnetic pulses(EMPs)can also be induced when high-intensity lasers hit targets to induce plasma,and then cause dysfunction of many types of traditional detectors.Therefore,new particle detecting technologies are highly needed.In this paper,we report a recently developed gated fiber detector which can be used in harsh EMP environments.In this prototype detector,scintillating photons are coupled by fiber and then transferred to a gated photomultiplier tube which is located far away from the EMP source and shielded well.With those measures,the EMPs can be avoided which may result that the device has the capability to identify a single event of nuclear reaction products generated in laser-induced plasma from noise EMP backgrounds.This new type of detector can be widely used as a time-of-flight(TOF)detector in high-intensity laser nuclear physics experiments for detecting neutrons,photons,and other charged particles. 展开更多
关键词 Gated fiber detector radiation detection High-intensity laser Strong electromagnetic pulses
在线阅读 下载PDF
Effect of dimensional expansion on carrier transport behaviors of the hexagonal Bi-based perovskite crystals 被引量:1
4
作者 Qihao Sun Bao Xiao +7 位作者 Leilei Ji Dou Zhao Jinjin Liu Wei Zhang Menghua Zhu Wanqi Jie Bin-Bin Zhang Yadong Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期459-465,I0013,共8页
All-inorganic Cs_(3)Bi_(2)I_(9)(CBI)halide perovskites are sought to be candidate for photoelectrical materials because of their low toxicity and satisfactory stability.Unfortunately,the discrete molecular[Bi2I9]3−clu... All-inorganic Cs_(3)Bi_(2)I_(9)(CBI)halide perovskites are sought to be candidate for photoelectrical materials because of their low toxicity and satisfactory stability.Unfortunately,the discrete molecular[Bi2I9]3−clusters limit the charge-transport behaviors.Herein,the defect halide perovskite based on trivalent Bi^(3+)is expanded to Cs_(3)Bi_(2)I_(6)Br_(3)(CBIB).Centimeter-size CBIB single crystal(Φ15×70 mm^(3))was grown by the vertical Bridgeman method.The powder X-ray diffraction analysis shows that CBIB has structure with lattice parameters of a=b=8.223Å,c=10.024Å,α=β=90°andγ=120°.The density functional theory(DFT)calculations demonstrate that the charge density distribution was enhanced after the dimensional expansion.The enhancement of carrier transport ability of(00l)in-plane is characterized before and after dimensional improvement.The obtained CBIB(001)exhibited an electron mobility up to 40.03 cm^(2)V^(−1)s^(−1)by time-of-flight(TOF)technique,higher than 26.46 cm^(2)V^(−1)s^(−1)of CBI(001).Furthermore,the X-ray sensitivity increases from 707.81μC Gy^(−1)cm^(−2)for CBI(001)to 3194.59μC Gy−1 cm^(−2)for CBIB(001).This research will deepen our understanding of Bi-based perovskite materials and afford more promising strategies for lead-free perovskite optoelectronic devices modification. 展开更多
关键词 Bi-based perovskite Dimensional expansion Carrier transport Bridgeman method radiation detection
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部