期刊文献+
共找到1,692篇文章
< 1 2 85 >
每页显示 20 50 100
A Basis Function Generation Based Digital Predistortion Concurrent Neural Network Model for RF Power Amplifiers
1
作者 SHAO Jianfeng HONG Xi +2 位作者 WANG Wenjie LIN Zeyu LI Yunhua 《ZTE Communications》 2025年第1期71-77,共7页
This paper proposes a concurrent neural network model to mitigate non-linear distortion in power amplifiers using a basis function generation approach.The model is designed using polynomial expansion and comprises a f... This paper proposes a concurrent neural network model to mitigate non-linear distortion in power amplifiers using a basis function generation approach.The model is designed using polynomial expansion and comprises a feedforward neural network(FNN)and a convolutional neural network(CNN).The proposed model takes the basic elements that form the bases as input,defined by the generalized memory polynomial(GMP)and dynamic deviation reduction(DDR)models.The FNN generates the basis function and its output represents the basis values,while the CNN generates weights for the corresponding bases.Through the concurrent training of FNN and CNN,the hidden layer coefficients are updated,and the complex multiplication of their outputs yields the trained in-phase/quadrature(I/Q)signals.The proposed model was trained and tested using 300 MHz and 400 MHz broadband data in an orthogonal frequency division multiplexing(OFDM)communication system.The results show that the model achieves an adjacent channel power ratio(ACPR)of less than-48 d B within a 100 MHz integral bandwidth for both the training and test datasets. 展开更多
关键词 basis function generation digital predistortion generalized memory polynomial dynamic deviation reduction neural network
在线阅读 下载PDF
State of charge estimation of Li-ion batteries in an electric vehicle based on a radial-basis-function neural network 被引量:6
2
作者 毕军 邵赛 +1 位作者 关伟 王璐 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第11期560-564,共5页
The on-line estimation of the state of charge (SOC) of the batteries is important for the reliable running of the pure electric vehicle in practice. Because a nonlinear feature exists in the batteries and the radial... The on-line estimation of the state of charge (SOC) of the batteries is important for the reliable running of the pure electric vehicle in practice. Because a nonlinear feature exists in the batteries and the radial-basis-function neural network (RBF NN) has good characteristics to solve the nonlinear problem, a practical method for the SOC estimation of batteries based on the RBF NN with a small number of input variables and a simplified structure is proposed. Firstly, in this paper, the model of on-line SOC estimation with the RBF NN is set. Secondly, four important factors for estimating the SOC are confirmed based on the contribution analysis method, which simplifies the input variables of the RBF NN and enhttnces the real-time performance of estimation. FiItally, the pure electric buses with LiFePO4 Li-ion batteries running during the period of the 2010 Shanghai World Expo are considered as the experimental object. The performance of the SOC estimation is validated and evaluated by the battery data from the electric vehicle. 展开更多
关键词 state of charge estimation BATTERY electric vehicle radial-basis-function neural network
在线阅读 下载PDF
Trajectory tracking guidance of interceptor via prescribed performance integral sliding mode with neural network disturbance observer 被引量:1
3
作者 Wenxue Chen Yudong Hu +1 位作者 Changsheng Gao Ruoming An 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期412-429,共18页
This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance system... This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots. 展开更多
关键词 BP network neural Integral sliding mode control(ISMC) Missile defense Prescribed performance function(PPF) State observer Tracking guidance system
在线阅读 下载PDF
MetaPINNs:Predicting soliton and rogue wave of nonlinear PDEs via the improved physics-informed neural networks based on meta-learned optimization
4
作者 郭亚楠 曹小群 +1 位作者 宋君强 冷洪泽 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期96-107,共12页
Efficiently solving partial differential equations(PDEs)is a long-standing challenge in mathematics and physics research.In recent years,the rapid development of artificial intelligence technology has brought deep lea... Efficiently solving partial differential equations(PDEs)is a long-standing challenge in mathematics and physics research.In recent years,the rapid development of artificial intelligence technology has brought deep learning-based methods to the forefront of research on numerical methods for partial differential equations.Among them,physics-informed neural networks(PINNs)are a new class of deep learning methods that show great potential in solving PDEs and predicting complex physical phenomena.In the field of nonlinear science,solitary waves and rogue waves have been important research topics.In this paper,we propose an improved PINN that enhances the physical constraints of the neural network model by adding gradient information constraints.In addition,we employ meta-learning optimization to speed up the training process.We apply the improved PINNs to the numerical simulation and prediction of solitary and rogue waves.We evaluate the accuracy of the prediction results by error analysis.The experimental results show that the improved PINNs can make more accurate predictions in less time than that of the original PINNs. 展开更多
关键词 physics-informed neural networks gradient-enhanced loss function meta-learned optimization nonlinear science
在线阅读 下载PDF
Correcting the systematic error of the density functional theory calculation:the alternate combination approach of genetic algorithm and neural network 被引量:1
5
作者 王婷婷 李文龙 +1 位作者 陈章辉 缪灵 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第7期437-444,共8页
The alternate combinational approach of genetic algorithm and neural network (AGANN) has been presented to correct the systematic error of the density functional theory (DFT) calculation. It treats the DFT as a bl... The alternate combinational approach of genetic algorithm and neural network (AGANN) has been presented to correct the systematic error of the density functional theory (DFT) calculation. It treats the DFT as a black box and models the error through external statistical information. As a demonstration, the ACANN method has been applied in the correction of the lattice energies from the DFT calculation for 72 metal halides and hydrides. Through the AGANN correction, the mean absolute value of the relative errors of the calculated lattice energies to the experimental values decreases from 4.93% to 1.20% in the testing set. For comparison, the neural network approach reduces the mean value to 2.56%. And for the common combinational approach of genetic algorithm and neural network, the value drops to 2.15%. The multiple linear regression method almost has no correction effect here. 展开更多
关键词 density functional theory neural network genetic algorithm alternate combination
在线阅读 下载PDF
Functional Link Neural Network for Predicting Crystallization Temperature of Ammonium Chloride in Air Cooler System 被引量:3
6
作者 Jin Haozhe Gu Yong +3 位作者 Ren Jia Wu Xiangyao Quan Jianxun Xu Linfengyi 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2020年第2期86-92,共7页
The air cooler is an important equipment in the petroleum refining industry.Ammonium chloride(NH4 Cl)deposition-induced corrosion is one of its main failure forms.In this study,the ammonium salt crystallization temper... The air cooler is an important equipment in the petroleum refining industry.Ammonium chloride(NH4 Cl)deposition-induced corrosion is one of its main failure forms.In this study,the ammonium salt crystallization temperature is chosen as the key decision variable of NH4 Cl deposition-induced corrosion through in-depth mechanism research and experimental analysis.The functional link neural network(FLNN)is adopted as the basic algorithm for modeling because of its advantages in dealing with non-linear problems and its fast-computational ability.A hybrid FLNN attached to a small norm is built to improve the generalization performance of the model.Then,the trained model is used to predict the NH4 Cl salt crystallization temperature in the air cooler of a sour water stripper plant.Experimental results show the proposed improved FLNN algorithm can achieve better generalization performance than the PLS,the back propagation neural network,and the conventional FLNN models. 展开更多
关键词 air cooler NH4Cl salt crystallization temperature DATA-DRIVEN functional link neural network particle swarm optimization
在线阅读 下载PDF
One-way hash function based on hyper-chaotic cellular neural network 被引量:1
7
作者 杨群亭 高铁杠 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第7期2388-2393,共6页
The design of an efficient one-way hash function with good performance is a hot spot in modern cryptography researches. In this paper, a hash function construction method based on cell neural network with hyper-chaos ... The design of an efficient one-way hash function with good performance is a hot spot in modern cryptography researches. In this paper, a hash function construction method based on cell neural network with hyper-chaos characteristics is proposed. First, the chaos sequence is gotten by iterating cellular neural network with Runge Kutta algorithm, and then the chaos sequence is iterated with the message. The hash code is obtained through the corre- sponding transform of the latter chaos sequence. Simulation and analysis demonstrate that the new method has the merit of convenience, high sensitivity to initial values, good hash performance, especially the strong stability. 展开更多
关键词 one-way hash function HYPER-CHAOS cellular neural network Runge Kutta formula
在线阅读 下载PDF
Coexistence and local Mittag–Leffler stability of fractional-order recurrent neural networks with discontinuous activation functions
8
作者 Yu-Jiao Huang Shi-Jun Chen +1 位作者 Xu-Hua Yang Jie Xiao 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第4期131-140,共10页
In this paper, coexistence and local Mittag–Leffler stability of fractional-order recurrent neural networks with discontinuous activation functions are addressed. Because of the discontinuity of the activation functi... In this paper, coexistence and local Mittag–Leffler stability of fractional-order recurrent neural networks with discontinuous activation functions are addressed. Because of the discontinuity of the activation function, Filippov solution of the neural network is defined. Based on Brouwer's fixed point theorem and definition of Mittag–Leffler stability, sufficient criteria are established to ensure the existence of (2k + 3)~n (k ≥ 1) equilibrium points, among which (k + 2)~n equilibrium points are locally Mittag–Leffler stable. Compared with the existing results, the derived results cover local Mittag–Leffler stability of both fractional-order and integral-order recurrent neural networks. Meanwhile discontinuous networks might have higher storage capacity than the continuous ones. Two numerical examples are elaborated to substantiate the effective of the theoretical results. 展开更多
关键词 FRACTIONAL-ORDER RECURRENT neural network LOCAL Mittag–Leffler STABILITY DISCONTINUOUS activation function
在线阅读 下载PDF
A new approach to stability analysis of neural networks with time-varying delay via novel Lyapunov-Krasovskii functional
9
作者 S.M.Lee O.M.Kwon Ju H.Park 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第5期115-120,共6页
In this paper, new delay-dependent stability criteria for asymptotic stability of neural networks with time-varying delays are derived. The stability conditions are represented in terms of linear matrix inequalities ... In this paper, new delay-dependent stability criteria for asymptotic stability of neural networks with time-varying delays are derived. The stability conditions are represented in terms of linear matrix inequalities (LMIs) by constructing new Lyapunov-Krasovskii functional. The proposed functional has an augmented quadratic form with states as well as the nonlinear function to consider the sector and the slope constraints. The less conservativeness of the proposed stability criteria can be guaranteed by using convex properties of the nonlinear function which satisfies the sector and slope bound. Numerical examples are presented to show the effectiveness of the proposed method. 展开更多
关键词 neural networks Lyapunov-Krasovskii functional sector bound TIME-DELAY
在线阅读 下载PDF
The Neural Network Model of Sinusoid Activation Transfer Function
10
作者 刘禹 王庆林 《Journal of Beijing Institute of Technology》 EI CAS 2004年第S1期21-25,共5页
A new type of neural network is described, which is basing on Fourier series, and the activation transfer function in its neuron model is sinusoid, ft can approximate to any function, which is continuum in every segme... A new type of neural network is described, which is basing on Fourier series, and the activation transfer function in its neuron model is sinusoid, ft can approximate to any function, which is continuum in every segment, with any precision with by layers only. We also provide the computer approach emulation results of different kinds of static function. 展开更多
关键词 SINUSOID Fourier series neural network function approximation
在线阅读 下载PDF
Multistability of delayed complex-valued recurrent neural networks with discontinuous real-imaginarytype activation functions
11
作者 黄玉娇 胡海根 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第12期271-279,共9页
In this paper, the multistability issue is discussed for delayed complex-valued recurrent neural networks with discontinuous real-imaginary-type activation functions. Based on a fixed theorem and stability definition,... In this paper, the multistability issue is discussed for delayed complex-valued recurrent neural networks with discontinuous real-imaginary-type activation functions. Based on a fixed theorem and stability definition, sufficient criteria are established for the existence and stability of multiple equilibria of complex-valued recurrent neural networks. The number of stable equilibria is larger than that of real-valued recurrent neural networks, which can be used to achieve high-capacity associative memories. One numerical example is provided to show the effectiveness and superiority of the presented results. 展开更多
关键词 complex-valued recurrent neural network discontinuous real-imaginary-type activation function MULTISTABILITY delay
在线阅读 下载PDF
Finite-time Mittag-Leffler synchronization of fractional-order delayed memristive neural networks with parameters uncertainty and discontinuous activation functions
12
作者 Chong Chen Zhixia Ding +1 位作者 Sai Li Liheng Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第4期127-138,共12页
The finite-time Mittag-Leffler synchronization is investigated for fractional-order delayed memristive neural networks(FDMNN)with parameters uncertainty and discontinuous activation functions.The relevant results are ... The finite-time Mittag-Leffler synchronization is investigated for fractional-order delayed memristive neural networks(FDMNN)with parameters uncertainty and discontinuous activation functions.The relevant results are obtained under the framework of Filippov for such systems.Firstly,the novel feedback controller,which includes the discontinuous functions and time delays,is proposed to investigate such systems.Secondly,the conditions on finite-time Mittag-Leffler synchronization of FDMNN are established according to the properties of fractional-order calculus and inequality analysis technique.At the same time,the upper bound of the settling time for Mittag-Leffler synchronization is accurately estimated.In addition,by selecting the appropriate parameters of the designed controller and utilizing the comparison theorem for fractional-order systems,the global asymptotic synchronization is achieved as a corollary.Finally,a numerical example is given to indicate the correctness of the obtained conclusions. 展开更多
关键词 FRACTIONAL-ORDER DELAYED memristive neural networks(FDMNN) parameters uncertainty DISCONTINUOUS ACTIVATION functions FINITE-TIME Mittag-Leffler SYNCHRONIZATION
在线阅读 下载PDF
INTERNET TRAFFIC DATA FLOW FORECAST BY RBF NEURAL NETWORK BASED ON PHASE SPACE RECONSTRUCTION 被引量:4
13
作者 陆锦军 王执铨 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第4期316-322,共7页
Characteristics of the Internet traffic data flow are studied based on the chaos theory. A phase space that is isometric with the network dynamic system is reconstructed by using the single variable time series of a n... Characteristics of the Internet traffic data flow are studied based on the chaos theory. A phase space that is isometric with the network dynamic system is reconstructed by using the single variable time series of a network flow. Some parameters, such as the correlative dimension and the Lyapunov exponent are calculated, and the chaos characteristic is proved to exist in Internet traffic data flows. A neural network model is construct- ed based on radial basis function (RBF) to forecast actual Internet traffic data flow. Simulation results show that, compared with other forecasts of the forward-feedback neural network, the forecast of the RBF neural network based on the chaos theory has faster learning capacity and higher forecasting accuracy. 展开更多
关键词 chaos theory phase space reeonstruction Lyapunov exponent tnternet data flow radial basis function neural network
在线阅读 下载PDF
Approximation to NLAR(p) with Wavelet Neural Networks
14
作者 朱石焕 吴曦 《Chinese Quarterly Journal of Mathematics》 CSCD 2002年第4期94-98,共5页
Recently, wavelet neural networks have become a popular tool for non-linear functional approximation. Wavelet neural networks, which basis functions are orthonormal scalling functions, are more suitable in approximati... Recently, wavelet neural networks have become a popular tool for non-linear functional approximation. Wavelet neural networks, which basis functions are orthonormal scalling functions, are more suitable in approximating to function. Based on it, approximating to NLAR(p) with wavelet neural networks is studied. 展开更多
关键词 wavelet neural networks orthonormal scaling functions NLAR(p)
在线阅读 下载PDF
Generalization Capabilities of Feedforward Neural Networks for Pattern Recognition
15
作者 黄德双 《Journal of Beijing Institute of Technology》 EI CAS 1996年第2期192+184-192,共10页
This paper studies the generalization capability of feedforward neural networks (FNN).The mechanism of FNNs for classification is investigated from the geometric and probabilistic viewpoints. It is pointed out that th... This paper studies the generalization capability of feedforward neural networks (FNN).The mechanism of FNNs for classification is investigated from the geometric and probabilistic viewpoints. It is pointed out that the outputs of the output layer in the FNNs for classification correspond to the estimates of posteriori probability of the input pattern samples with desired outputs 1 or 0. The theorem for the generalized kernel function in the radial basis function networks (RBFN) is given. For an 2-layer perceptron network (2-LPN). an idea of using extended samples to improve generalization capability is proposed. Finally. the experimental results of radar target classification are given to verify the generaliztion capability of the RBFNs. 展开更多
关键词 feedforward neural networks radial basis function networks multilayer perceptronnetworks generalization capability radar target classification
在线阅读 下载PDF
Recovery of saturated signal waveform acquired from high-energy particles with artificial neural networks 被引量:4
16
作者 Yu Liu Jing-Jun Zhu +5 位作者 Neil Roberts Ke-Ming Chen Yu-Lu Yan Shuang-Rong Mo Peng Gu Hao-Yang Xing 《Nuclear Science and Techniques》 SCIE CAS CSCD 2019年第10期30-39,共10页
Artificial neural networks(ANNs)are a core component of artificial intelligence and are frequently used in machine learning.In this report,we investigate the use of ANNs to recover the saturated signals acquired in hi... Artificial neural networks(ANNs)are a core component of artificial intelligence and are frequently used in machine learning.In this report,we investigate the use of ANNs to recover the saturated signals acquired in highenergy particle and nuclear physics experiments.The inherent properties of the detector and hardware imply that particles with relatively high energies probably often generate saturated signals.Usually,these saturated signals are discarded during data processing,and therefore,some useful information is lost.Thus,it is worth restoring the saturated signals to their normal form.The mapping from a saturated signal waveform to a normal signal waveform constitutes a regression problem.Given that the scintillator and collection usually do not form a linear system,typical regression methods such as multi-parameter fitting are not immediately applicable.One important advantage of ANNs is their capability to process nonlinear regression problems.To recover the saturated signal,three typical ANNs were tested including backpropagation(BP),simple recurrent(Elman),and generalized radial basis function(GRBF)neural networks(NNs).They represent a basic network structure,a network structure with feedback,and a network structure with a kernel function,respectively.The saturated waveforms were produced mainly by the environmental gamma in a liquid scintillation detector for the China Dark Matter Detection Experiment(CDEX).The training and test data sets consisted of 6000 and 3000 recordings of background radiation,respectively,in which saturation was simulated by truncating each waveform at 40%of the maximum signal.The results show that the GBRF-NN performed best as measured using a Chi-squared test to compare the original and reconstructed signals in the region in which saturation was simulated.A comparison of the original and reconstructed signals in this region shows that the GBRF neural network produced the best performance.This ANN demonstrates a powerful efficacy in terms of solving the saturation recovery problem.The proposed method outlines new ideas and possibilities for the recovery of saturated signals in high-energy particle and nuclear physics experiments.This study also illustrates an innovative application of machine learning in the analysis of experimental data in particle physics. 展开更多
关键词 Saturated signals Artificial neural networks(ANNs) RECOVERY of signal waveform Generalized radial basis function Backpropagation neural network ELMAN neural network
在线阅读 下载PDF
Chip-Based High-Dimensional Optical Neural Network 被引量:7
17
作者 Xinyu Wang Peng Xie +1 位作者 Bohan Chen Xingcai Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第12期570-578,共9页
Parallel multi-thread processing in advanced intelligent processors is the core to realize high-speed and high-capacity signal processing systems.Optical neural network(ONN)has the native advantages of high paralleliz... Parallel multi-thread processing in advanced intelligent processors is the core to realize high-speed and high-capacity signal processing systems.Optical neural network(ONN)has the native advantages of high parallelization,large bandwidth,and low power consumption to meet the demand of big data.Here,we demonstrate the dual-layer ONN with Mach-Zehnder interferometer(MZI)network and nonlinear layer,while the nonlinear activation function is achieved by optical-electronic signal conversion.Two frequency components from the microcomb source carrying digit datasets are simultaneously imposed and intelligently recognized through the ONN.We successfully achieve the digit classification of different frequency components by demultiplexing the output signal and testing power distribution.Efficient parallelization feasibility with wavelength division multiplexing is demonstrated in our high-dimensional ONN.This work provides a high-performance architecture for future parallel high-capacity optical analog computing. 展开更多
关键词 Integrated optics Optical neural network High-dimension Mach-Zehnder interferometer Nonlinear activation function Parallel high-capacity analog computing
在线阅读 下载PDF
DYNAMICS OF NEW CLASS OF HOPFIELD NEURAL NETWORKS WITH TIME-VARYING AND DISTRIBUTED DELAYS 被引量:3
18
作者 Adnene ARBI Farouk CHERIF +1 位作者 Chaouki AOUITI Abderrahmen TOUATI 《Acta Mathematica Scientia》 SCIE CSCD 2016年第3期891-912,共22页
In this paper, we investigate the dynamics and the global exponential stability of a new class of Hopfield neural network with time-varying and distributed delays. In fact, the properties of norms and the contraction ... In this paper, we investigate the dynamics and the global exponential stability of a new class of Hopfield neural network with time-varying and distributed delays. In fact, the properties of norms and the contraction principle are adjusted to ensure the existence as well as the uniqueness of the pseudo almost periodic solution, which is also its derivative pseudo almost periodic. This results are without resorting to the theory of exponential dichotomy. Furthermore, by employing the suitable Lyapunov function, some delayindependent sufficient conditions are derived for exponential convergence. The main originality lies in the fact that spaces considered in this paper generalize the notion of periodicity and almost periodicity. Lastly, two examples are given to demonstrate the validity of the proposed theoretical results. 展开更多
关键词 delayed functional differential equations neural networks pseudo-almost peri- odic solution global exponential stability time-varying and distributed delays fixed point theorem
在线阅读 下载PDF
Global exponential stability of mixed discrete and distributively delayed cellular neural network 被引量:2
19
作者 姚洪兴 周佳燕 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第1期245-257,共13页
This paper concernes analysis for the global exponential stability of a class of recurrent neural networks with mixed discrete and distributed delays. It first proves the existence and uniqueness of the balance point,... This paper concernes analysis for the global exponential stability of a class of recurrent neural networks with mixed discrete and distributed delays. It first proves the existence and uniqueness of the balance point, then by employing the Lyapunov-Krasovskii functional and Young inequality, it gives the sufficient condition of global exponential stability of cellular neural network with mixed discrete and distributed delays, in addition, the example is provided to illustrate the applicability of the result. 展开更多
关键词 global exponential stability cellular neural network mixed discrete and distributed de-lays Lyapunov-Krasovskii functional and Young inequality
在线阅读 下载PDF
Numeral eddy current sensor modelling based on genetic neural network 被引量:1
20
作者 俞阿龙 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第3期878-882,共5页
This paper presents a method used to the numeral eddy current sensor modelling based on the genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced... This paper presents a method used to the numeral eddy current sensor modelling based on the genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced. In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data. So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network. The nonlinear model has the advantages of strong robustness, on-line modelling and high precision. The maximum nonlinearity error can be reduced to 0.037% by using GNN. However, the maximum nonlinearity error is 0.075% using the least square method. 展开更多
关键词 MODELLING numeral eddy current sensor functional link neural network genetic neural network
在线阅读 下载PDF
上一页 1 2 85 下一页 到第
使用帮助 返回顶部