The exact radar cross-section (RCS) measurement is difficult when the scattering of targets is low. Ful polarimetric cali-bration is one technique that offers the potential for improving the accuracy of RCS measurem...The exact radar cross-section (RCS) measurement is difficult when the scattering of targets is low. Ful polarimetric cali-bration is one technique that offers the potential for improving the accuracy of RCS measurements. There are numerous polarimetric calibration algorithms. Some complex expressions in these algo-rithms cannot be easily used in an engineering practice. A radar polarimetric coefficients matrix (RPCM) with a simpler expression is presented for the monostatic radar polarization scattering matrix (PSM) measurement. Using a rhombic dihedral corner reflector and a metal ic sphere, the RPCM can be obtained by solving a set of equations, which can be used to find the true PSM for any target. An example for the PSM of a metal ic dish shows that the proposed method obviously improves the accuracy of cross-polarized RCS measurements.展开更多
A new method of calculating the radai cross section (RCS) for wing-body blended targets is presented and verified. The method utilizes a computer program for modeling targets' geometry in terms of small pieces. Th...A new method of calculating the radai cross section (RCS) for wing-body blended targets is presented and verified. The method utilizes a computer program for modeling targets' geometry in terms of small pieces. The calculation is based on physical optics approximation. Examples are given to show the validity of the method.展开更多
We develop an efficient method for polished metallic sphere’s scattering prediction in terahertz band when its frequency dispersion property is considered. By deducing scattering solution of the lossy metallic sphere...We develop an efficient method for polished metallic sphere’s scattering prediction in terahertz band when its frequency dispersion property is considered. By deducing scattering solution of the lossy metallic sphere, the radar cross section(RCS)of different metallic spheres is given at terahertz frequencies. The investigation of the RCS of polished metallic spheres shows the normalized RCS is always same to the metals’ normal incidence reflectivity when the sphere becomes electrically large. The metals which have high reflectivity(such as Al, Cu, Ag and Au) show that the corresponding RCS of the spheres is almost πa2 in terahertz band. The sphere’s RCS of the transition metal such as Fe begins to decrease obviously since the far infrared.展开更多
Based on a Pade approximation, a wide-angle parabolic equation method is introduced for computing the multiobject radar cross section (RCS) for the first time. The method is a paraxial version of the scalar wave equ...Based on a Pade approximation, a wide-angle parabolic equation method is introduced for computing the multiobject radar cross section (RCS) for the first time. The method is a paraxial version of the scalar wave equation, which solves the field by marching them along the paraxial direction. Numerical results show that a single wide-angle parabofic equation run can compute multi-object RCS efficiently for angles up to 45 ° . The method provides anew and efficient numerical method for computation electromagnetics.展开更多
It is well known that the incorrect results will be given using either the electric or magnetic field integral equation to calculate the radar cross section (RCS) of a closed body at the interior resonance. In this pa...It is well known that the incorrect results will be given using either the electric or magnetic field integral equation to calculate the radar cross section (RCS) of a closed body at the interior resonance. In this paper, an effective iterative technique is used to correct the calculated surface current density from the electric field integral equation. The radar cross section is computed for an infinite conducting circular cylinder at the interior resonance, and the obtained results are in good agreement with the analytical results. The backscattering cross section of an infinite triangular cylinder in the vicinity of a resonant frequency is also calculated. It is shown that the presence method is efficient and accurate.展开更多
A new method called multi-frequency holography (MFH) for two-dimensional radar cross-section imaging of rotating objects is introduced, in which a constant coherent reference signal from transmitted signal is added in...A new method called multi-frequency holography (MFH) for two-dimensional radar cross-section imaging of rotating objects is introduced, in which a constant coherent reference signal from transmitted signal is added into received signal over certain frequency-width. With the MFH only the intensity of received composite signals needs to be measured. Both imaging situations of far field and near field are considered in details. Special restrictions about the MFH are also discussed and simulated by numerical computation. Examples of numerical simulation show that the method is effective, applicable and perspective.展开更多
In this paper, the drawbacks of conventional target fluctuation models used in radar target modeling are set out. It is usually difficult to statistically model a real target because there are very few parameters whic...In this paper, the drawbacks of conventional target fluctuation models used in radar target modeling are set out. It is usually difficult to statistically model a real target because there are very few parameters which can be used to approximate the probability density function (PDF) of a real target's radar cross section (RCS) in conventional target models. A new method of statistical modeling is suggested, according to which the first nth central moment of real target's RCS, combined with the Legendre orthogonal polynomials, is used to reconstruct the PDF of the target's RCS. The relationship between the coefficients of the Legendre polynomials and the central moments of RCS are deduced mathematically. Through a practical computing example, the error-of-fit is shown as a function of the orders of Legendre coefficients. By comparing the errors-of-fit caused by both the new model and the conventional models, it is concluded that the new nonparametric method for statistical modeling of radar targets is superior.展开更多
This paper studies the development on the first order sea clutter cross section for bistatic high frequency surface wave radar (HFSWR). Based on the received first order electric field expression, a closed-form of cro...This paper studies the development on the first order sea clutter cross section for bistatic high frequency surface wave radar (HFSWR). Based on the received first order electric field expression, a closed-form of cross sections is derived to account for the case of receiving antenna array being mounted on the shipborne platform. The uniform linear motion and sway motion components are assumed to be responsible for the observed differences in comparison with the bistatic fixed antenna case. Correspondingly, simulations are conducted to study the sea clutter spectral characteristics for these two cases versus different system parameters and sea state conditions. It is shown numerically that the forward motion component will spread the Bragg lines severely and the influence triggered by the sway motion can be explained as the Bessel function modulation of the ordinary sea clutter spectra. The obtained results have important implications in the application of shipborne HFSWR technology to ocean remote sensing and target detection.展开更多
The reduction of TE-scattering by a conducting cylinder with multiple surface impedance loads is investigated. Synthesis procedures are developed to find the optimal loading which result in zero scattering in the desi...The reduction of TE-scattering by a conducting cylinder with multiple surface impedance loads is investigated. Synthesis procedures are developed to find the optimal loading which result in zero scattering in the desired directions or at several frequencies. Numerical results of these procedures are presented. The theoretical predictions are confirmed with an experiment. The proposed synthesis procedure is completely general and can be applied to arbitrarily shaped conducting bodies.展开更多
基金supported by the National Basic Research Program of China(973 Program)(2010CB731905)
文摘The exact radar cross-section (RCS) measurement is difficult when the scattering of targets is low. Ful polarimetric cali-bration is one technique that offers the potential for improving the accuracy of RCS measurements. There are numerous polarimetric calibration algorithms. Some complex expressions in these algo-rithms cannot be easily used in an engineering practice. A radar polarimetric coefficients matrix (RPCM) with a simpler expression is presented for the monostatic radar polarization scattering matrix (PSM) measurement. Using a rhombic dihedral corner reflector and a metal ic sphere, the RPCM can be obtained by solving a set of equations, which can be used to find the true PSM for any target. An example for the PSM of a metal ic dish shows that the proposed method obviously improves the accuracy of cross-polarized RCS measurements.
文摘A new method of calculating the radai cross section (RCS) for wing-body blended targets is presented and verified. The method utilizes a computer program for modeling targets' geometry in terms of small pieces. The calculation is based on physical optics approximation. Examples are given to show the validity of the method.
基金supported by the National Science Fund for Young Scientists of China(6130214861571011)
文摘We develop an efficient method for polished metallic sphere’s scattering prediction in terahertz band when its frequency dispersion property is considered. By deducing scattering solution of the lossy metallic sphere, the radar cross section(RCS)of different metallic spheres is given at terahertz frequencies. The investigation of the RCS of polished metallic spheres shows the normalized RCS is always same to the metals’ normal incidence reflectivity when the sphere becomes electrically large. The metals which have high reflectivity(such as Al, Cu, Ag and Au) show that the corresponding RCS of the spheres is almost πa2 in terahertz band. The sphere’s RCS of the transition metal such as Fe begins to decrease obviously since the far infrared.
基金This project was partially supported by the National Natural Science Foundation of China (60371041).
文摘Based on a Pade approximation, a wide-angle parabolic equation method is introduced for computing the multiobject radar cross section (RCS) for the first time. The method is a paraxial version of the scalar wave equation, which solves the field by marching them along the paraxial direction. Numerical results show that a single wide-angle parabofic equation run can compute multi-object RCS efficiently for angles up to 45 ° . The method provides anew and efficient numerical method for computation electromagnetics.
基金This project was supported by the Foundation of MOE of China (No. 00179).
文摘It is well known that the incorrect results will be given using either the electric or magnetic field integral equation to calculate the radar cross section (RCS) of a closed body at the interior resonance. In this paper, an effective iterative technique is used to correct the calculated surface current density from the electric field integral equation. The radar cross section is computed for an infinite conducting circular cylinder at the interior resonance, and the obtained results are in good agreement with the analytical results. The backscattering cross section of an infinite triangular cylinder in the vicinity of a resonant frequency is also calculated. It is shown that the presence method is efficient and accurate.
文摘A new method called multi-frequency holography (MFH) for two-dimensional radar cross-section imaging of rotating objects is introduced, in which a constant coherent reference signal from transmitted signal is added into received signal over certain frequency-width. With the MFH only the intensity of received composite signals needs to be measured. Both imaging situations of far field and near field are considered in details. Special restrictions about the MFH are also discussed and simulated by numerical computation. Examples of numerical simulation show that the method is effective, applicable and perspective.
基金国防科技重点实验室基金项目(51447070104252502) The author would like to thanks Academician Lu Jian-xun and Profs Yi Xue-qin and Song Dong-an for their useful help and suggestions.
文摘In this paper, the drawbacks of conventional target fluctuation models used in radar target modeling are set out. It is usually difficult to statistically model a real target because there are very few parameters which can be used to approximate the probability density function (PDF) of a real target's radar cross section (RCS) in conventional target models. A new method of statistical modeling is suggested, according to which the first nth central moment of real target's RCS, combined with the Legendre orthogonal polynomials, is used to reconstruct the PDF of the target's RCS. The relationship between the coefficients of the Legendre polynomials and the central moments of RCS are deduced mathematically. Through a practical computing example, the error-of-fit is shown as a function of the orders of Legendre coefficients. By comparing the errors-of-fit caused by both the new model and the conventional models, it is concluded that the new nonparametric method for statistical modeling of radar targets is superior.
基金supported by the National Natural Science Foundation of China(61471144)
文摘This paper studies the development on the first order sea clutter cross section for bistatic high frequency surface wave radar (HFSWR). Based on the received first order electric field expression, a closed-form of cross sections is derived to account for the case of receiving antenna array being mounted on the shipborne platform. The uniform linear motion and sway motion components are assumed to be responsible for the observed differences in comparison with the bistatic fixed antenna case. Correspondingly, simulations are conducted to study the sea clutter spectral characteristics for these two cases versus different system parameters and sea state conditions. It is shown numerically that the forward motion component will spread the Bragg lines severely and the influence triggered by the sway motion can be explained as the Bessel function modulation of the ordinary sea clutter spectra. The obtained results have important implications in the application of shipborne HFSWR technology to ocean remote sensing and target detection.
文摘The reduction of TE-scattering by a conducting cylinder with multiple surface impedance loads is investigated. Synthesis procedures are developed to find the optimal loading which result in zero scattering in the desired directions or at several frequencies. Numerical results of these procedures are presented. The theoretical predictions are confirmed with an experiment. The proposed synthesis procedure is completely general and can be applied to arbitrarily shaped conducting bodies.