Fire detection has a great impact on people’s life safety.Fire Detection-DETR(FD-DETR)is a fire detection model based on RT-DETR for early fire identification in complex fire scenes.In this study,Adown sub-sampling m...Fire detection has a great impact on people’s life safety.Fire Detection-DETR(FD-DETR)is a fire detection model based on RT-DETR for early fire identification in complex fire scenes.In this study,Adown sub-sampling module was selected to improve the original convolution module,which improved the detection accuracy and reduced the number of parameter values.Using LSKA attention module on the backbone network further improved the detection accuracy.The experimental results showed that compared with the original RT-DETR model,the precision and mAP of FD-DETR flame detection are increased by 0.8%and 0.1%,respectively,which proves that the improved method proposed in this study effectively improves the feature extraction and feature fusion capabilities of the network.In the complex scene fire detection task,the performance of the improved RT-DETR algorithm is better than the original RT-DETR algorithm.展开更多
The correct identification of traffic signs plays an important role in automatic driving technology and road safety driving.Therefore,to address the problems of misdetection and omission in traffic sign detection due ...The correct identification of traffic signs plays an important role in automatic driving technology and road safety driving.Therefore,to address the problems of misdetection and omission in traffic sign detection due to the variety of sign types,significant size differences and complex background information,an improved traffic sign detection model for RT-DETR was proposed in this study.Firstly,the HiLo attention mechanism was added to the Attention-based Intra-scale Feature Interaction,which further enhanced the feature extraction capability of the network and improved the detection efficiency on high-resolution images.Secondly,the CAFMFusion feature fusion mechanism was designed,which enabled the network to pay attention to the features in different regions in each channel.Based on this,the model could better capture the remote dependencies and neighborhood feature correlation,improving the feature fusion capability of the model.Finally,the MPDIoU was used as the loss function of the improved model to achieve faster convergence and more accurate regression results.The experimental results on the TT100k-2021 traffic sign dataset showed that the improved model achieves the performance with a precision value of 90.2%,recall value of 88.1%and mAP@0.5 value of 91.6%,which are 4.6%,5.8%,and 4.4%better than the original RT-DETR model respectively.The model effectively improves the problem of poor traffic sign detection and has greater practical value.展开更多
文摘Fire detection has a great impact on people’s life safety.Fire Detection-DETR(FD-DETR)is a fire detection model based on RT-DETR for early fire identification in complex fire scenes.In this study,Adown sub-sampling module was selected to improve the original convolution module,which improved the detection accuracy and reduced the number of parameter values.Using LSKA attention module on the backbone network further improved the detection accuracy.The experimental results showed that compared with the original RT-DETR model,the precision and mAP of FD-DETR flame detection are increased by 0.8%and 0.1%,respectively,which proves that the improved method proposed in this study effectively improves the feature extraction and feature fusion capabilities of the network.In the complex scene fire detection task,the performance of the improved RT-DETR algorithm is better than the original RT-DETR algorithm.
文摘The correct identification of traffic signs plays an important role in automatic driving technology and road safety driving.Therefore,to address the problems of misdetection and omission in traffic sign detection due to the variety of sign types,significant size differences and complex background information,an improved traffic sign detection model for RT-DETR was proposed in this study.Firstly,the HiLo attention mechanism was added to the Attention-based Intra-scale Feature Interaction,which further enhanced the feature extraction capability of the network and improved the detection efficiency on high-resolution images.Secondly,the CAFMFusion feature fusion mechanism was designed,which enabled the network to pay attention to the features in different regions in each channel.Based on this,the model could better capture the remote dependencies and neighborhood feature correlation,improving the feature fusion capability of the model.Finally,the MPDIoU was used as the loss function of the improved model to achieve faster convergence and more accurate regression results.The experimental results on the TT100k-2021 traffic sign dataset showed that the improved model achieves the performance with a precision value of 90.2%,recall value of 88.1%and mAP@0.5 value of 91.6%,which are 4.6%,5.8%,and 4.4%better than the original RT-DETR model respectively.The model effectively improves the problem of poor traffic sign detection and has greater practical value.