为加快末端物流配送的效率,提出一种配送无人机的航迹规划问题。针对传统快速搜索随机树(rapidlysearch random tree,RRT)算法在航迹规划中存在的盲目性和路径不平滑等问题,将人工势场法(artificial potential field,APF)与Informed-RRT...为加快末端物流配送的效率,提出一种配送无人机的航迹规划问题。针对传统快速搜索随机树(rapidlysearch random tree,RRT)算法在航迹规划中存在的盲目性和路径不平滑等问题,将人工势场法(artificial potential field,APF)与Informed-RRT^(*)算法融合,提出一种自适应步长增长策略的改进APF-Informed-RRT^(*)算法。首先在选择新节点时,考虑到障碍物和目标点的影响,提出一种自适应步长增长策略来解决采样的盲目性;其次采用三次B样条对拐点处进行平滑处理;最后分别采用RRT^(*)算法、Informed-RRT^(*)算法和改进APF-Informed-RRT^(*)算法在两种环境中进行仿真实验。结果表明,改进APF-Informed-RRT^(*)算法相较于RRT^(*)算法和Informed-RRT^(*)算法,在运行时间、迭代次数以及路径平滑上都得到提升。展开更多
针对快速扩展随机树(rapid-exploration random tree^(*),RRT^(*))算法在三维避障路径规划中存在盲目性、低效率和路径不光滑的问题,提出一种改进的RRT^(*)算法,以提高焊接机器人路径规划的性能。通过采用双向搜索策略,缩短搜索时间;结...针对快速扩展随机树(rapid-exploration random tree^(*),RRT^(*))算法在三维避障路径规划中存在盲目性、低效率和路径不光滑的问题,提出一种改进的RRT^(*)算法,以提高焊接机器人路径规划的性能。通过采用双向搜索策略,缩短搜索时间;结合人工势场(artificial potential field,APF)算法与RRT^(*)算法以提升路径平滑性并平衡局部优化与全局最优;提出一种基于角度与密度的改进APF算法策略,提高避障与路径引导效率;提出动态目标偏置策略和动态步长策略,以增强算法在障碍物密集和稀疏区域的自适应性及搜索效率;采用路径修剪策略缩短和平滑路径。最后,通过改进的RRT^(*)算法与RRT^(*)、APF-RRT^(*)、Bi-APF-RRT^(*)(bidirectional-APFRRT^(*))3种算法对比仿真实验以及真机实验,验证了改进算法的高效性和实用性。展开更多
针对无人机在进行电力巡检时遇到的变电站设备或密集树木场景下的障碍物避障困难问题,在传统快速扩展随机树(rapid-exploring random tree,RRT)算法的基础上,提出了一种新的快速扩展随机树-椭球子集采样算法(quick and informed RRT-sta...针对无人机在进行电力巡检时遇到的变电站设备或密集树木场景下的障碍物避障困难问题,在传统快速扩展随机树(rapid-exploring random tree,RRT)算法的基础上,提出了一种新的快速扩展随机树-椭球子集采样算法(quick and informed RRT-star,QI-RRT^(*))算法。算法提出了两项关键优化:通过采用Q-RRT^(*)(quick RRT-star)算法中的重连重写步骤提升无人机电力巡检路径优化效果;引用含椭球子集采样的多目标采样策略,增强路径规划的目标导向性。最后,将QI-RRT^(*)算法与其他算法在模拟巡检环境下进行了对比仿真实验,从扩展情况、路径代价、规划时间等多个维度分析实验结果。结果表明,该算法相比RRT^(*)(RRT-star)算法平均缩短83.07%的规划时间,同时减少了4.76%的路径代价,验证了在多障碍物环境下,QI-RRT^(*)算法对无人机快速寻找有效的巡检路径具有显著的提升效果。展开更多
针对传统快速随机搜索树^(*)(rapidly-exploring random tree^(*),RRT^(*))算法收敛速率较慢,且不适用于动态场景等问题,提出一种基于目标点偏置和冗余节点删除的改进RRT*算法,用于解决移动机器人快速找到无碰撞最优路径的问题。此算法...针对传统快速随机搜索树^(*)(rapidly-exploring random tree^(*),RRT^(*))算法收敛速率较慢,且不适用于动态场景等问题,提出一种基于目标点偏置和冗余节点删除的改进RRT*算法,用于解决移动机器人快速找到无碰撞最优路径的问题。此算法在RRT^(*)算法基础上,首先对采样点进行优化处理,保证路径最优的同时减少搜寻时间;其次引入路径节点最大值概念,删除扩展树冗余节点以提高算法效率;最后结合动态窗口(dynamic window approaches,DWA)算法提高路径的安全性和平滑性,实现对动态障碍物的避障。通过3种不同地图下的仿真验证,改进算法能有效提升路径质量,且大幅降低运行时间。展开更多
文摘为加快末端物流配送的效率,提出一种配送无人机的航迹规划问题。针对传统快速搜索随机树(rapidlysearch random tree,RRT)算法在航迹规划中存在的盲目性和路径不平滑等问题,将人工势场法(artificial potential field,APF)与Informed-RRT^(*)算法融合,提出一种自适应步长增长策略的改进APF-Informed-RRT^(*)算法。首先在选择新节点时,考虑到障碍物和目标点的影响,提出一种自适应步长增长策略来解决采样的盲目性;其次采用三次B样条对拐点处进行平滑处理;最后分别采用RRT^(*)算法、Informed-RRT^(*)算法和改进APF-Informed-RRT^(*)算法在两种环境中进行仿真实验。结果表明,改进APF-Informed-RRT^(*)算法相较于RRT^(*)算法和Informed-RRT^(*)算法,在运行时间、迭代次数以及路径平滑上都得到提升。
文摘针对快速扩展随机树(rapid-exploration random tree^(*),RRT^(*))算法在三维避障路径规划中存在盲目性、低效率和路径不光滑的问题,提出一种改进的RRT^(*)算法,以提高焊接机器人路径规划的性能。通过采用双向搜索策略,缩短搜索时间;结合人工势场(artificial potential field,APF)算法与RRT^(*)算法以提升路径平滑性并平衡局部优化与全局最优;提出一种基于角度与密度的改进APF算法策略,提高避障与路径引导效率;提出动态目标偏置策略和动态步长策略,以增强算法在障碍物密集和稀疏区域的自适应性及搜索效率;采用路径修剪策略缩短和平滑路径。最后,通过改进的RRT^(*)算法与RRT^(*)、APF-RRT^(*)、Bi-APF-RRT^(*)(bidirectional-APFRRT^(*))3种算法对比仿真实验以及真机实验,验证了改进算法的高效性和实用性。
文摘针对无人机在进行电力巡检时遇到的变电站设备或密集树木场景下的障碍物避障困难问题,在传统快速扩展随机树(rapid-exploring random tree,RRT)算法的基础上,提出了一种新的快速扩展随机树-椭球子集采样算法(quick and informed RRT-star,QI-RRT^(*))算法。算法提出了两项关键优化:通过采用Q-RRT^(*)(quick RRT-star)算法中的重连重写步骤提升无人机电力巡检路径优化效果;引用含椭球子集采样的多目标采样策略,增强路径规划的目标导向性。最后,将QI-RRT^(*)算法与其他算法在模拟巡检环境下进行了对比仿真实验,从扩展情况、路径代价、规划时间等多个维度分析实验结果。结果表明,该算法相比RRT^(*)(RRT-star)算法平均缩短83.07%的规划时间,同时减少了4.76%的路径代价,验证了在多障碍物环境下,QI-RRT^(*)算法对无人机快速寻找有效的巡检路径具有显著的提升效果。
文摘针对传统快速随机搜索树^(*)(rapidly-exploring random tree^(*),RRT^(*))算法收敛速率较慢,且不适用于动态场景等问题,提出一种基于目标点偏置和冗余节点删除的改进RRT*算法,用于解决移动机器人快速找到无碰撞最优路径的问题。此算法在RRT^(*)算法基础上,首先对采样点进行优化处理,保证路径最优的同时减少搜寻时间;其次引入路径节点最大值概念,删除扩展树冗余节点以提高算法效率;最后结合动态窗口(dynamic window approaches,DWA)算法提高路径的安全性和平滑性,实现对动态障碍物的避障。通过3种不同地图下的仿真验证,改进算法能有效提升路径质量,且大幅降低运行时间。