Low Earth orbit(LEO)satellite networks exhibit distinct characteristics,e.g.,limited resources of individual satellite nodes and dynamic network topology,which have brought many challenges for routing algorithms.To sa...Low Earth orbit(LEO)satellite networks exhibit distinct characteristics,e.g.,limited resources of individual satellite nodes and dynamic network topology,which have brought many challenges for routing algorithms.To satisfy quality of service(QoS)requirements of various users,it is critical to research efficient routing strategies to fully utilize satellite resources.This paper proposes a multi-QoS information optimized routing algorithm based on reinforcement learning for LEO satellite networks,which guarantees high level assurance demand services to be prioritized under limited satellite resources while considering the load balancing performance of the satellite networks for low level assurance demand services to ensure the full and effective utilization of satellite resources.An auxiliary path search algorithm is proposed to accelerate the convergence of satellite routing algorithm.Simulation results show that the generated routing strategy can timely process and fully meet the QoS demands of high assurance services while effectively improving the load balancing performance of the link.展开更多
Delay aware routing is now widely used to provide efficient network transmission. However, for newly developing or developed mobile communication networks(MCN), only limited delay data can be obtained. In such a netwo...Delay aware routing is now widely used to provide efficient network transmission. However, for newly developing or developed mobile communication networks(MCN), only limited delay data can be obtained. In such a network, the delay is with epistemic uncertainty, which makes the traditional routing scheme based on deterministic theory or probability theory not applicable. Motivated by this problem, the MCN with epistemic uncertainty is first summarized as a dynamic uncertain network based on uncertainty theory, which is widely applied to model epistemic uncertainties. Then by modeling the uncertain end-toend delay, a new delay bounded routing scheme is proposed to find the path with the maximum belief degree that satisfies the delay threshold for the dynamic uncertain network. Finally, a lowEarth-orbit satellite communication network(LEO-SCN) is used as a case to verify the effectiveness of our routing scheme. It is first modeled as a dynamic uncertain network, and then the delay bounded paths with the maximum belief degree are computed and compared under different delay thresholds.展开更多
As commercial drone delivery becomes increasingly popular,the extension of the vehicle routing problem with drones(VRPD)is emerging as an optimization problem of inter-ests.This paper studies a variant of VRPD in mult...As commercial drone delivery becomes increasingly popular,the extension of the vehicle routing problem with drones(VRPD)is emerging as an optimization problem of inter-ests.This paper studies a variant of VRPD in multi-trip and multi-drop(VRP-mmD).The problem aims at making schedules for the trucks and drones such that the total travel time is minimized.This paper formulate the problem with a mixed integer program-ming model and propose a two-phase algorithm,i.e.,a parallel route construction heuristic(PRCH)for the first phase and an adaptive neighbor searching heuristic(ANSH)for the second phase.The PRCH generates an initial solution by con-currently assigning as many nodes as possible to the truck–drone pair to progressively reduce the waiting time at the rendezvous node in the first phase.Then the ANSH improves the initial solution by adaptively exploring the neighborhoods in the second phase.Numerical tests on some benchmark data are conducted to verify the performance of the algorithm.The results show that the proposed algorithm can found better solu-tions than some state-of-the-art methods for all instances.More-over,an extensive analysis highlights the stability of the pro-posed algorithm.展开更多
The multi-compartment electric vehicle routing problem(EVRP)with soft time window and multiple charging types(MCEVRP-STW&MCT)is studied,in which electric multi-compartment vehicles that are environmentally friendl...The multi-compartment electric vehicle routing problem(EVRP)with soft time window and multiple charging types(MCEVRP-STW&MCT)is studied,in which electric multi-compartment vehicles that are environmentally friendly but need to be recharged in course of transport process,are employed.A mathematical model for this optimization problem is established with the objective of minimizing the function composed of vehicle cost,distribution cost,time window penalty cost and charging service cost.To solve the problem,an estimation of the distribution algorithm based on Lévy flight(EDA-LF)is proposed to perform a local search at each iteration to prevent the algorithm from falling into local optimum.Experimental results demonstrate that the EDA-LF algorithm can find better solutions and has stronger robustness than the basic EDA algorithm.In addition,when comparing with existing algorithms,the result shows that the EDA-LF can often get better solutions in a relatively short time when solving medium and large-scale instances.Further experiments show that using electric multi-compartment vehicles to deliver incompatible products can produce better results than using traditional fuel vehicles.展开更多
Constraint-based multicast routing, which aims at identifying a path that satisfies a set of quality of service (QoS) constraints, has became a very important research issue in the areas of networks and distributed sy...Constraint-based multicast routing, which aims at identifying a path that satisfies a set of quality of service (QoS) constraints, has became a very important research issue in the areas of networks and distributed systems. In general, multi-constrained path selection with or without optimization is a NP-complete problem that can not be exactly solved in polynomial time. Hence, accurate constraints-based routing algorithms with a fast running time are scarce, perhaps even non-existent. The expected impact of such a constrained-based routing algorithm has resulted in the proposal of numerous heuristics and a few exact QoS algorithms. This paper aims to give a thorough, concise and fair evaluation of the most important multiple constraint-based QoS multicast routing algorithms known today, and it provides a descriptive overview and simulation results of these multi-constrained routing algorithms.展开更多
Existing position-based routing algorithms, where packets are forwarded in the geographic direction of the destination, normally require that the forwarding node should know the positions of all neighbors in its trans...Existing position-based routing algorithms, where packets are forwarded in the geographic direction of the destination, normally require that the forwarding node should know the positions of all neighbors in its transmission range. This information on direct neighbors is gained by observing beacon messages that each node sends out periodically. Several beaconless greedy routing schemes have been proposed recently. However, none of the existing beaconless schemes guarantee the delivery of packets. Moreover, they incur communication overhead by sending excessive control messages or by broadcasting data packets. In this paper, we describe how existing localized position based routing schemes that guarantee delivery can be made beaconless, while preserving the same routes. In our guaranteed delivery beaconless routing scheme, the next hop is selected through the use of control RTS/CTS messages and biased timeouts. In greedy mode, the neighbor closest to destination responds first. In recovery mode, nodes closer to the source will select shorter timeouts, so that other neighbors, overhearing CTS packets, can eliminate their own CTS packets if they realize that their link to the source is not part of Gabriel graph. Nodes also cancel their packets after receiving data message sent by source to the selected neighbor. We analyze the behavior of our scheme on our simulation environment assuming ideal MAC, following GOAFR+ and GFG routing schemes. Our results demonstrate low communication overhead in addition to guaranteed delivery.展开更多
Adaptive clustering hierarchy routing(ACHR) establishes a clusters-based hierarchical hybrid routing algorithm with two-hop local visibility for delay tolerant network(DTN).The major contribution of ACHR is the combin...Adaptive clustering hierarchy routing(ACHR) establishes a clusters-based hierarchical hybrid routing algorithm with two-hop local visibility for delay tolerant network(DTN).The major contribution of ACHR is the combination of single copy scheme and multi-copy scheme and the combination of hop-by-hop and multi-hop mechanism ACHR,which has the advantages in simplicity,availability and well-expansibility.The result shows that it can take advantage of the random communication opportunities and local network connectivity,and achieves 1.6 times delivery ratio and 60% overhead compared with its counterpart.展开更多
Quality of service (QoS) routing and multicasting protocols in ad hoc networks are face with the challenge of delivering data to destinations through multihop routes in the presence of node movements and topology ch...Quality of service (QoS) routing and multicasting protocols in ad hoc networks are face with the challenge of delivering data to destinations through multihop routes in the presence of node movements and topology changes. The multicast routing problem with multiple QoS constraints is discussed, which may deal with the delay, bandwidth and cost metrics, and describes a network model for researching the ad hoc networks QoS multicast routing problem. It presents a distributed QoS multicast routing protocol (DQMRP). The proof of correctness and complenty analysis of the DQMRP are also given. Simulation results show that the multicast tree optimized by DQMRP is better than other protocols and is fitter for the network situations with frequently changed status and the realtime multimedia application. It is an available approach to multicast routing decision with multiple QoS constraints.展开更多
Though the WiMedia supports higher data rates than other WPAN technologies,a WiMedia device cannot reach other devices that are separated from it by more than 10 m,which is the typical limited transmission range of th...Though the WiMedia supports higher data rates than other WPAN technologies,a WiMedia device cannot reach other devices that are separated from it by more than 10 m,which is the typical limited transmission range of the WiMedia protocol.In this work,we propose a multi-hop QoS routing protocol to enable WiMedia devices to transmit real-time data to devices that are located out of the transmission range.The proposed routing protocol is a hybrid algorithm,which mixes the table-driven and on-demand routing algorithms,searching one or more routes according to the number of hops to a destination device.WiMedia MAC is potentially capable of learning the existence of neighbor devices by using a beacon frame.By utilizing the neighbors' information,all devices can create routing entries for devices within 2-hops periodically.For devices beyond the 2-hop range,the newly designed on-demand routing algorithm is applied to multi-hop routing.If a routing entry for a destination device is not listed in the routing table,the source device sends a request packet to 2-hop range devices which could be found in the routing table.Since every device maintains routing entries for 2-hop range devices in the routing table,the request packet is replied in advance before its arrival at the destination device.Also,to decide the optimal route for a destination device,the number of medium access slots(MASs),received signal strength indicator(RSSI)and hop count are utilized to establish a QoS-enabled routing table.We perform ns-2 simulation to investigate the performance of the proposed routing protocol with AODV and DSDV.The simulation results show that the proposed protocol has better throughput and lower overhead than other protocols.展开更多
Ad hoe wireless networks consist of mobile nodes interconnected by multihop communication paths. Unlike conventional wireless networks, ad hoc networks have no fixed network infrastructure or administrative support. D...Ad hoe wireless networks consist of mobile nodes interconnected by multihop communication paths. Unlike conventional wireless networks, ad hoc networks have no fixed network infrastructure or administrative support. Due to bandwidth constraint and dynamic topology of mobile ad hoc networks, supporting Quality of Service (QoS) is an inherently complex, difficult issue and very important research issue. MAODV (Multicast Ad hoc Ondemand Distance Vector) routing protocol provides fast and efficient route establishment between mobile nodes that need to communicate with each other. MAODV has minimal control overhead and route acquisition latency. In addition to unicast routing, MAODV supports multicast and broadcast as well. The multicast routing problem with multiple QoS constraints, which may deal with the delay, bandwidth and packet loss measurements is discussed, and a network model for researching the ad hoc network QoS multicast routing problem is described. It presents a complete solution for QoS multicast routing based on an extension of the MAODV routing protocol that deals with delay, bandwidth and packet loss mesurements. The solution is based on lower layer specifics. Simulation results show that, with the proposed QoS multicast routing protocol, end-to-end delay, bandwidth and packet loss on a route can be improved in most of cases. It is an available approach to multicast routing decision with multiple QoS constraints.展开更多
A new coarse-grained differentiated least interference routing algorithm(CDLI) with DiffServ-Aware was presented.This algorithm is composed of off-line and on-line stages,taking into account both real-time traffic and...A new coarse-grained differentiated least interference routing algorithm(CDLI) with DiffServ-Aware was presented.This algorithm is composed of off-line and on-line stages,taking into account both real-time traffic and best-effort traffic.Off-line stage is to determine the shortest path set disjointed path(DP) database for real-time traffic,and to identify link critical value by traffic profile information of real-time traffic and DP database.On-line stage is at first to select route in the DP database for real-time traffic,if there is no path to meet the needs,the dynamic routing will be operated.On-line routing algorithm chooses the relatively short path for real-time traffic to meet their bandwidth requirements,and for best-effort traffic it chooses a lighter load path.The simulation results show that compared with the dynamic online routing algorithm(DORA) and constrained shortest path first(CSPF) algorithm,the new algorithm can significantly improve network throughput and reduce the average path length of real-time traffic.This guarantees quality of service(QoS) of real-time traffic while improving the utilization of network resources.展开更多
The multicast routing problem with multiple QoS constraints in networks with uncertain parameters is discussed, and a network model that is suitable to research such QoS multicast routing problem is described. The QMR...The multicast routing problem with multiple QoS constraints in networks with uncertain parameters is discussed, and a network model that is suitable to research such QoS multicast routing problem is described. The QMRGA, a multicast routing policy for Internet, mobile network or other highperformance networks is mainly presented, which is based on the genetic algorithm(GA), and can provide QoSsensitive paths in a scalable and flexible way in the network environment with uncertain parameters. The QMRGA can also optimize the network resources such as bandwidth and delay, and can converge to the optimal or nearoptimal solution within few iterations, even for the network environment with uncertain parameters. The incremental rate of computational cost can be close to a polynomial and is less than exponential rate. The performance measures of the QMRGA are evaluated by using simulations. The results show that QMRGA provides an available approach to QoS multicast routing in network environment with uncertain parameters.展开更多
The time dependent vehicle routing problem with time windows(TDVRPTW) is considered. A multi-type ant system(MTAS) algorithm hybridized with the ant colony system(ACS)and the max-min ant system(MMAS) algorithm...The time dependent vehicle routing problem with time windows(TDVRPTW) is considered. A multi-type ant system(MTAS) algorithm hybridized with the ant colony system(ACS)and the max-min ant system(MMAS) algorithms is proposed. This combination absorbs the merits of the two algorithms in solutions construction and optimization separately. In order to improve the efficiency of the insertion procedure, a nearest neighbor selection(NNS) mechanism, an insertion local search procedure and a local optimization procedure are specified in detail. And in order to find a balance between good scouting performance and fast convergence rate, an adaptive pheromone updating strategy is proposed in the MTAS. Computational results confirm the MTAS algorithm's good performance with all these strategies on classic vehicle routing problem with time windows(VRPTW) benchmark instances and the TDVRPTW instances, and some better results especially for the number of vehicles and travel times of the best solutions are obtained in comparison with the previous research.展开更多
To avoid uneven energy consuming in wireless sen- sor networks, a clustering routing model is proposed based on a Bayesian game. In the model, Harsanyi transformation is introduced to convert a static game of incomple...To avoid uneven energy consuming in wireless sen- sor networks, a clustering routing model is proposed based on a Bayesian game. In the model, Harsanyi transformation is introduced to convert a static game of incomplete information to the static game of complete but imperfect information. In addition, the existence of Bayesian nash equilibrium is proved. A clustering routing algorithm is also designed according to the proposed model, both cluster head distribution and residual energy are considered in the design of the algorithm. Simulation results show that the algorithm can balance network load, save energy and prolong network lifetime effectively.展开更多
The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency...The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency. A multi-objective model was presented for the material distribution routing problem in mixed manufacturing systems, and it was solved by a hybrid multi-objective evolutionary algorithm (HMOEA). The characteristics of the HMOEA are as follows: 1) A route pool is employed to preserve the best routes for the population initiation; 2) A specialized best?worst route crossover (BWRC) mode is designed to perform the crossover operators for selecting the best route from Chromosomes 1 to exchange with the worst one in Chromosomes 2, so that the better genes are inherited to the offspring; 3) A route swap mode is used to perform the mutation for improving the convergence speed and preserving the better gene; 4) Local heuristics search methods are applied in this algorithm. Computational study of a practical case shows that the proposed algorithm can decrease the total travel distance by 51.66%, enhance the average vehicle load rate by 37.85%, cut down 15 routes and reduce a deliver vehicle. The convergence speed of HMOEA is faster than that of famous NSGA-II.展开更多
A lot of routing algorithms have been proposed for low earth orbit(LEO) satellite IP networks in recent years,but most of them cannot achieve global optimization.The dynamic characters of LEO satellite networks are ...A lot of routing algorithms have been proposed for low earth orbit(LEO) satellite IP networks in recent years,but most of them cannot achieve global optimization.The dynamic characters of LEO satellite networks are reflected in two aspects:topology and traffic change.The algorithms mentioned above are "hard routing" which only realize local optimization.A distributed soft routing algorithm combined with multi-agent system(MASSR) is proposed.In MASSR,mobile agents are used to gather routing information actively,and blackboard is introduced to achieve direct information exchange between agents.MASSR provides traffic adaptive routing and tracks the change of LEO satellite network topology.The performance of ant colony optimization(ACO) and MASSR are compared in Iridium constellation,and MASSR presents better end-to-end delay as well as enhanced robustness.展开更多
Satellite networks have many inherent advantages over terrestrial networks and have become an important part of the global network infrastructure.Routing aimed at satellite networks has become a hot and challenging re...Satellite networks have many inherent advantages over terrestrial networks and have become an important part of the global network infrastructure.Routing aimed at satellite networks has become a hot and challenging research topic.Satellite networks,which are special kind of Delay Tolerant Networks(DTN),can also adopt the routing solutions of DTN.Among the many routing proposals,Contact Graph Routing(CGR) is an excellent candidate,since it is designed particularly for use in highly deterministic space networks.The applicability of CGR in satellite networks is evaluated by utilizing the space oriented DTN gateway model based on OPNET(Optimized Network Engineering Tool).Link failures are solved with neighbor discovery mechanism and route recomputation.Earth observation scenario is used in the simulations to investigate CGR's performance.The results show that the CGR performances are better in terms of effectively utilizing satellite networks resources to calculate continuous route path and alternative route can be successfully calculated under link failures by utilizing fault tolerance scheme.展开更多
There were many contradictory evaluation criteria to select next-hop in the delay-disruption tolerance networks(DTN).To solve this problem,an attribute hierarchical model was proposed,in which the predefined criteria ...There were many contradictory evaluation criteria to select next-hop in the delay-disruption tolerance networks(DTN).To solve this problem,an attribute hierarchical model was proposed,in which the predefined criteria were summarized as static identity attributes,forwarding desire attributes and delivery capability attributes(IDC).Based on this model,a novel multi-attributes congestion aware routing(MACAR) scheme with uncertain information for next-hop selection was presented,by adopting an decision theory to aggregate attributes with belief structure and computing partial ordering relations.The simulation results show that MACAR presents higher successful delivery rate,lower average delay and effectively alleviate congestion.展开更多
In the Internet, a group of replicated servers is commonly used in order to improve the scalability of network service. Anycast service is a new network service that can improve network load distribution and simplify ...In the Internet, a group of replicated servers is commonly used in order to improve the scalability of network service. Anycast service is a new network service that can improve network load distribution and simplify certain applications. In this paper, the authors described a simple anycast service model in the Internet without significant affecting the routing and protocol processing infrastructure that was already in place, and proposed an anycast QoS routing algorithm for this model. The algorithm used randomized method to balance network load and improve its performance. Several new techniques are proposed in the algorithm, first, theminimum hops for each node are used in the algorithm, which are used as metric for computing the probability of possible out links. The metric is pre computed for each node in the network, which can simplify the network complexity and provide the routing process with useful information. Second, randomness is used at the link level and depends dynamically on the routing configuration. This provides great flexibility for the routing process, prevents the routing process from overusing certain fixed routing paths, and adequately balances the delay of the routing path. the authors assess the quality of QoS algorithm in terms of the acceptance ratio on anycast QoS requests, and the simulation results on a variety of network topologies and on various parameters show that the algorithm has good performances and can balance network load effectively.展开更多
An adaptive multi-QoS routing algorithm called AMQRA is proposed for dynamic topology networks, such as satellite networks and Ad-hoc networks. The AMQRA is a distributed and mobile-agents-based routing algorithm, whi...An adaptive multi-QoS routing algorithm called AMQRA is proposed for dynamic topology networks, such as satellite networks and Ad-hoc networks. The AMQRA is a distributed and mobile-agents-based routing algorithm, which combines ant quantity system (AQS) with ant colony optimization (ACO) that is used in AntNet routing algorithm. In dynamic topology networks, the AMQRA achieves timely optimization for concave metric QoS constraint and fast convergence. The proposed routing algorithm is simulated in Iridium satellite constellation on OPNET. The results show that AMQRA not only outperforms the AntNet in convergence rate in dynamic topology networks but also can optimize concave metric QoS constraint and reasonably allot bandwidth to the load to avoid networks congestion.展开更多
基金National Key Research and Development Program(2021YFB2900604)。
文摘Low Earth orbit(LEO)satellite networks exhibit distinct characteristics,e.g.,limited resources of individual satellite nodes and dynamic network topology,which have brought many challenges for routing algorithms.To satisfy quality of service(QoS)requirements of various users,it is critical to research efficient routing strategies to fully utilize satellite resources.This paper proposes a multi-QoS information optimized routing algorithm based on reinforcement learning for LEO satellite networks,which guarantees high level assurance demand services to be prioritized under limited satellite resources while considering the load balancing performance of the satellite networks for low level assurance demand services to ensure the full and effective utilization of satellite resources.An auxiliary path search algorithm is proposed to accelerate the convergence of satellite routing algorithm.Simulation results show that the generated routing strategy can timely process and fully meet the QoS demands of high assurance services while effectively improving the load balancing performance of the link.
基金National Natural Science Foundation of China (61773044,62073009)National key Laboratory of Science and Technology on Reliability and Environmental Engineering(WDZC2019601A301)。
文摘Delay aware routing is now widely used to provide efficient network transmission. However, for newly developing or developed mobile communication networks(MCN), only limited delay data can be obtained. In such a network, the delay is with epistemic uncertainty, which makes the traditional routing scheme based on deterministic theory or probability theory not applicable. Motivated by this problem, the MCN with epistemic uncertainty is first summarized as a dynamic uncertain network based on uncertainty theory, which is widely applied to model epistemic uncertainties. Then by modeling the uncertain end-toend delay, a new delay bounded routing scheme is proposed to find the path with the maximum belief degree that satisfies the delay threshold for the dynamic uncertain network. Finally, a lowEarth-orbit satellite communication network(LEO-SCN) is used as a case to verify the effectiveness of our routing scheme. It is first modeled as a dynamic uncertain network, and then the delay bounded paths with the maximum belief degree are computed and compared under different delay thresholds.
文摘As commercial drone delivery becomes increasingly popular,the extension of the vehicle routing problem with drones(VRPD)is emerging as an optimization problem of inter-ests.This paper studies a variant of VRPD in multi-trip and multi-drop(VRP-mmD).The problem aims at making schedules for the trucks and drones such that the total travel time is minimized.This paper formulate the problem with a mixed integer program-ming model and propose a two-phase algorithm,i.e.,a parallel route construction heuristic(PRCH)for the first phase and an adaptive neighbor searching heuristic(ANSH)for the second phase.The PRCH generates an initial solution by con-currently assigning as many nodes as possible to the truck–drone pair to progressively reduce the waiting time at the rendezvous node in the first phase.Then the ANSH improves the initial solution by adaptively exploring the neighborhoods in the second phase.Numerical tests on some benchmark data are conducted to verify the performance of the algorithm.The results show that the proposed algorithm can found better solu-tions than some state-of-the-art methods for all instances.More-over,an extensive analysis highlights the stability of the pro-posed algorithm.
基金supported by the National Natural Science Foundation of China(71571076)the National Key R&D Program for the 13th-Five-Year-Plan of China(2018YFF0300301).
文摘The multi-compartment electric vehicle routing problem(EVRP)with soft time window and multiple charging types(MCEVRP-STW&MCT)is studied,in which electric multi-compartment vehicles that are environmentally friendly but need to be recharged in course of transport process,are employed.A mathematical model for this optimization problem is established with the objective of minimizing the function composed of vehicle cost,distribution cost,time window penalty cost and charging service cost.To solve the problem,an estimation of the distribution algorithm based on Lévy flight(EDA-LF)is proposed to perform a local search at each iteration to prevent the algorithm from falling into local optimum.Experimental results demonstrate that the EDA-LF algorithm can find better solutions and has stronger robustness than the basic EDA algorithm.In addition,when comparing with existing algorithms,the result shows that the EDA-LF can often get better solutions in a relatively short time when solving medium and large-scale instances.Further experiments show that using electric multi-compartment vehicles to deliver incompatible products can produce better results than using traditional fuel vehicles.
文摘Constraint-based multicast routing, which aims at identifying a path that satisfies a set of quality of service (QoS) constraints, has became a very important research issue in the areas of networks and distributed systems. In general, multi-constrained path selection with or without optimization is a NP-complete problem that can not be exactly solved in polynomial time. Hence, accurate constraints-based routing algorithms with a fast running time are scarce, perhaps even non-existent. The expected impact of such a constrained-based routing algorithm has resulted in the proposal of numerous heuristics and a few exact QoS algorithms. This paper aims to give a thorough, concise and fair evaluation of the most important multiple constraint-based QoS multicast routing algorithms known today, and it provides a descriptive overview and simulation results of these multi-constrained routing algorithms.
基金Supported by Natural Sciences and Engineering Research Council, Collaborative Research and Development Grant (319848) of Canada
文摘Existing position-based routing algorithms, where packets are forwarded in the geographic direction of the destination, normally require that the forwarding node should know the positions of all neighbors in its transmission range. This information on direct neighbors is gained by observing beacon messages that each node sends out periodically. Several beaconless greedy routing schemes have been proposed recently. However, none of the existing beaconless schemes guarantee the delivery of packets. Moreover, they incur communication overhead by sending excessive control messages or by broadcasting data packets. In this paper, we describe how existing localized position based routing schemes that guarantee delivery can be made beaconless, while preserving the same routes. In our guaranteed delivery beaconless routing scheme, the next hop is selected through the use of control RTS/CTS messages and biased timeouts. In greedy mode, the neighbor closest to destination responds first. In recovery mode, nodes closer to the source will select shorter timeouts, so that other neighbors, overhearing CTS packets, can eliminate their own CTS packets if they realize that their link to the source is not part of Gabriel graph. Nodes also cancel their packets after receiving data message sent by source to the selected neighbor. We analyze the behavior of our scheme on our simulation environment assuming ideal MAC, following GOAFR+ and GFG routing schemes. Our results demonstrate low communication overhead in addition to guaranteed delivery.
基金Project(531107040202) supported by the Fundamental Research Funds for the Central Universities of China
文摘Adaptive clustering hierarchy routing(ACHR) establishes a clusters-based hierarchical hybrid routing algorithm with two-hop local visibility for delay tolerant network(DTN).The major contribution of ACHR is the combination of single copy scheme and multi-copy scheme and the combination of hop-by-hop and multi-hop mechanism ACHR,which has the advantages in simplicity,availability and well-expansibility.The result shows that it can take advantage of the random communication opportunities and local network connectivity,and achieves 1.6 times delivery ratio and 60% overhead compared with its counterpart.
基金This project was supported by the National Natural Science Foundation of China (60172035 ,90304018) NSF of HubeiProvince (2004ABA014) and Teaching Research Project of Higher Educational Institutions of Hubei Province (20040231)
文摘Quality of service (QoS) routing and multicasting protocols in ad hoc networks are face with the challenge of delivering data to destinations through multihop routes in the presence of node movements and topology changes. The multicast routing problem with multiple QoS constraints is discussed, which may deal with the delay, bandwidth and cost metrics, and describes a network model for researching the ad hoc networks QoS multicast routing problem. It presents a distributed QoS multicast routing protocol (DQMRP). The proof of correctness and complenty analysis of the DQMRP are also given. Simulation results show that the multicast tree optimized by DQMRP is better than other protocols and is fitter for the network situations with frequently changed status and the realtime multimedia application. It is an available approach to multicast routing decision with multiple QoS constraints.
基金Project supported by the Second Stage of Brain Korea 21 ProjectsProject(10035236)supported by the IT_R&D Program of MKE/KEIT,Korea
文摘Though the WiMedia supports higher data rates than other WPAN technologies,a WiMedia device cannot reach other devices that are separated from it by more than 10 m,which is the typical limited transmission range of the WiMedia protocol.In this work,we propose a multi-hop QoS routing protocol to enable WiMedia devices to transmit real-time data to devices that are located out of the transmission range.The proposed routing protocol is a hybrid algorithm,which mixes the table-driven and on-demand routing algorithms,searching one or more routes according to the number of hops to a destination device.WiMedia MAC is potentially capable of learning the existence of neighbor devices by using a beacon frame.By utilizing the neighbors' information,all devices can create routing entries for devices within 2-hops periodically.For devices beyond the 2-hop range,the newly designed on-demand routing algorithm is applied to multi-hop routing.If a routing entry for a destination device is not listed in the routing table,the source device sends a request packet to 2-hop range devices which could be found in the routing table.Since every device maintains routing entries for 2-hop range devices in the routing table,the request packet is replied in advance before its arrival at the destination device.Also,to decide the optimal route for a destination device,the number of medium access slots(MASs),received signal strength indicator(RSSI)and hop count are utilized to establish a QoS-enabled routing table.We perform ns-2 simulation to investigate the performance of the proposed routing protocol with AODV and DSDV.The simulation results show that the proposed protocol has better throughput and lower overhead than other protocols.
基金This project was supported by the National Natural Science Foundation of China (60172035 ,90304018) NSF of HubeiProvince (2004ABA014) and Teaching Research Project of Higher Educational Institutions of Hubei Province (20040231)
文摘Ad hoe wireless networks consist of mobile nodes interconnected by multihop communication paths. Unlike conventional wireless networks, ad hoc networks have no fixed network infrastructure or administrative support. Due to bandwidth constraint and dynamic topology of mobile ad hoc networks, supporting Quality of Service (QoS) is an inherently complex, difficult issue and very important research issue. MAODV (Multicast Ad hoc Ondemand Distance Vector) routing protocol provides fast and efficient route establishment between mobile nodes that need to communicate with each other. MAODV has minimal control overhead and route acquisition latency. In addition to unicast routing, MAODV supports multicast and broadcast as well. The multicast routing problem with multiple QoS constraints, which may deal with the delay, bandwidth and packet loss measurements is discussed, and a network model for researching the ad hoc network QoS multicast routing problem is described. It presents a complete solution for QoS multicast routing based on an extension of the MAODV routing protocol that deals with delay, bandwidth and packet loss mesurements. The solution is based on lower layer specifics. Simulation results show that, with the proposed QoS multicast routing protocol, end-to-end delay, bandwidth and packet loss on a route can be improved in most of cases. It is an available approach to multicast routing decision with multiple QoS constraints.
基金Project(2003AA781011) supported by the National High-Tech Research and Development of Program of China Project(20072022) supported by Science and Technology Foundation of Liaoning Province,China
文摘A new coarse-grained differentiated least interference routing algorithm(CDLI) with DiffServ-Aware was presented.This algorithm is composed of off-line and on-line stages,taking into account both real-time traffic and best-effort traffic.Off-line stage is to determine the shortest path set disjointed path(DP) database for real-time traffic,and to identify link critical value by traffic profile information of real-time traffic and DP database.On-line stage is at first to select route in the DP database for real-time traffic,if there is no path to meet the needs,the dynamic routing will be operated.On-line routing algorithm chooses the relatively short path for real-time traffic to meet their bandwidth requirements,and for best-effort traffic it chooses a lighter load path.The simulation results show that compared with the dynamic online routing algorithm(DORA) and constrained shortest path first(CSPF) algorithm,the new algorithm can significantly improve network throughput and reduce the average path length of real-time traffic.This guarantees quality of service(QoS) of real-time traffic while improving the utilization of network resources.
文摘The multicast routing problem with multiple QoS constraints in networks with uncertain parameters is discussed, and a network model that is suitable to research such QoS multicast routing problem is described. The QMRGA, a multicast routing policy for Internet, mobile network or other highperformance networks is mainly presented, which is based on the genetic algorithm(GA), and can provide QoSsensitive paths in a scalable and flexible way in the network environment with uncertain parameters. The QMRGA can also optimize the network resources such as bandwidth and delay, and can converge to the optimal or nearoptimal solution within few iterations, even for the network environment with uncertain parameters. The incremental rate of computational cost can be close to a polynomial and is less than exponential rate. The performance measures of the QMRGA are evaluated by using simulations. The results show that QMRGA provides an available approach to QoS multicast routing in network environment with uncertain parameters.
文摘The time dependent vehicle routing problem with time windows(TDVRPTW) is considered. A multi-type ant system(MTAS) algorithm hybridized with the ant colony system(ACS)and the max-min ant system(MMAS) algorithms is proposed. This combination absorbs the merits of the two algorithms in solutions construction and optimization separately. In order to improve the efficiency of the insertion procedure, a nearest neighbor selection(NNS) mechanism, an insertion local search procedure and a local optimization procedure are specified in detail. And in order to find a balance between good scouting performance and fast convergence rate, an adaptive pheromone updating strategy is proposed in the MTAS. Computational results confirm the MTAS algorithm's good performance with all these strategies on classic vehicle routing problem with time windows(VRPTW) benchmark instances and the TDVRPTW instances, and some better results especially for the number of vehicles and travel times of the best solutions are obtained in comparison with the previous research.
基金supported by the National Natural Science Fundation of China (60974082 60874085)+2 种基金the Fundamental Research Funds for the Central Universities (K50510700004)the Technology Plan Projects of Guangdong Province (20110401)the Team Project of Hanshan Normal University (LT201001)
文摘To avoid uneven energy consuming in wireless sen- sor networks, a clustering routing model is proposed based on a Bayesian game. In the model, Harsanyi transformation is introduced to convert a static game of incomplete information to the static game of complete but imperfect information. In addition, the existence of Bayesian nash equilibrium is proved. A clustering routing algorithm is also designed according to the proposed model, both cluster head distribution and residual energy are considered in the design of the algorithm. Simulation results show that the algorithm can balance network load, save energy and prolong network lifetime effectively.
基金Project(50775089)supported by the National Natural Science Foundation of ChinaProject(2007AA04Z190,2009AA043301)supported by the National High Technology Research and Development Program of ChinaProject(2005CB724100)supported by the National Basic Research Program of China
文摘The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency. A multi-objective model was presented for the material distribution routing problem in mixed manufacturing systems, and it was solved by a hybrid multi-objective evolutionary algorithm (HMOEA). The characteristics of the HMOEA are as follows: 1) A route pool is employed to preserve the best routes for the population initiation; 2) A specialized best?worst route crossover (BWRC) mode is designed to perform the crossover operators for selecting the best route from Chromosomes 1 to exchange with the worst one in Chromosomes 2, so that the better genes are inherited to the offspring; 3) A route swap mode is used to perform the mutation for improving the convergence speed and preserving the better gene; 4) Local heuristics search methods are applied in this algorithm. Computational study of a practical case shows that the proposed algorithm can decrease the total travel distance by 51.66%, enhance the average vehicle load rate by 37.85%, cut down 15 routes and reduce a deliver vehicle. The convergence speed of HMOEA is faster than that of famous NSGA-II.
基金supported by the National Natural Science Foundation of China (60532030)
文摘A lot of routing algorithms have been proposed for low earth orbit(LEO) satellite IP networks in recent years,but most of them cannot achieve global optimization.The dynamic characters of LEO satellite networks are reflected in two aspects:topology and traffic change.The algorithms mentioned above are "hard routing" which only realize local optimization.A distributed soft routing algorithm combined with multi-agent system(MASSR) is proposed.In MASSR,mobile agents are used to gather routing information actively,and blackboard is introduced to achieve direct information exchange between agents.MASSR provides traffic adaptive routing and tracks the change of LEO satellite network topology.The performance of ant colony optimization(ACO) and MASSR are compared in Iridium constellation,and MASSR presents better end-to-end delay as well as enhanced robustness.
基金Supported by the open project of Communication network transmission and distribution technologies Key Laboratory(ITD-12005/K1260011)the National Natural Science Foundation of China(61371126) and the National Natural Science Foundation of China(60903195)
文摘Satellite networks have many inherent advantages over terrestrial networks and have become an important part of the global network infrastructure.Routing aimed at satellite networks has become a hot and challenging research topic.Satellite networks,which are special kind of Delay Tolerant Networks(DTN),can also adopt the routing solutions of DTN.Among the many routing proposals,Contact Graph Routing(CGR) is an excellent candidate,since it is designed particularly for use in highly deterministic space networks.The applicability of CGR in satellite networks is evaluated by utilizing the space oriented DTN gateway model based on OPNET(Optimized Network Engineering Tool).Link failures are solved with neighbor discovery mechanism and route recomputation.Earth observation scenario is used in the simulations to investigate CGR's performance.The results show that the CGR performances are better in terms of effectively utilizing satellite networks resources to calculate continuous route path and alternative route can be successfully calculated under link failures by utilizing fault tolerance scheme.
基金Project(60973127) supported by the National Natural Science Foundation of ChinaProject(09JJ3123) supported by the Natural Science Foundation of Hunan Province,China
文摘There were many contradictory evaluation criteria to select next-hop in the delay-disruption tolerance networks(DTN).To solve this problem,an attribute hierarchical model was proposed,in which the predefined criteria were summarized as static identity attributes,forwarding desire attributes and delivery capability attributes(IDC).Based on this model,a novel multi-attributes congestion aware routing(MACAR) scheme with uncertain information for next-hop selection was presented,by adopting an decision theory to aggregate attributes with belief structure and computing partial ordering relations.The simulation results show that MACAR presents higher successful delivery rate,lower average delay and effectively alleviate congestion.
基金TheNationalScienceFundforOverseasDistinguishedYoungScholars (No .6 992 82 0 1)FoundationforUniversityKeyTeacherbytheMinist
文摘In the Internet, a group of replicated servers is commonly used in order to improve the scalability of network service. Anycast service is a new network service that can improve network load distribution and simplify certain applications. In this paper, the authors described a simple anycast service model in the Internet without significant affecting the routing and protocol processing infrastructure that was already in place, and proposed an anycast QoS routing algorithm for this model. The algorithm used randomized method to balance network load and improve its performance. Several new techniques are proposed in the algorithm, first, theminimum hops for each node are used in the algorithm, which are used as metric for computing the probability of possible out links. The metric is pre computed for each node in the network, which can simplify the network complexity and provide the routing process with useful information. Second, randomness is used at the link level and depends dynamically on the routing configuration. This provides great flexibility for the routing process, prevents the routing process from overusing certain fixed routing paths, and adequately balances the delay of the routing path. the authors assess the quality of QoS algorithm in terms of the acceptance ratio on anycast QoS requests, and the simulation results on a variety of network topologies and on various parameters show that the algorithm has good performances and can balance network load effectively.
基金the National Natural Science Foundation of China (60532030)
文摘An adaptive multi-QoS routing algorithm called AMQRA is proposed for dynamic topology networks, such as satellite networks and Ad-hoc networks. The AMQRA is a distributed and mobile-agents-based routing algorithm, which combines ant quantity system (AQS) with ant colony optimization (ACO) that is used in AntNet routing algorithm. In dynamic topology networks, the AMQRA achieves timely optimization for concave metric QoS constraint and fast convergence. The proposed routing algorithm is simulated in Iridium satellite constellation on OPNET. The results show that AMQRA not only outperforms the AntNet in convergence rate in dynamic topology networks but also can optimize concave metric QoS constraint and reasonably allot bandwidth to the load to avoid networks congestion.