期刊文献+
共找到327篇文章
< 1 2 17 >
每页显示 20 50 100
应用LSTM-RNN的特高压直流输电系统继电保护故障检测方法 被引量:2
1
作者 张学友 石永建 +2 位作者 李冀 郭振宇 戴剑丰 《中国测试》 北大核心 2025年第3期177-184,共8页
为解决传统特高压直流保护对高阻故障检测准确率不高、故障检测时间过长以及故障选极不完善的问题,提出基于长短时记忆(long short term memory,LSTM)循环神经网络(recurrent neural network,RNN)的特高压直流输电线路继电保护故障检测... 为解决传统特高压直流保护对高阻故障检测准确率不高、故障检测时间过长以及故障选极不完善的问题,提出基于长短时记忆(long short term memory,LSTM)循环神经网络(recurrent neural network,RNN)的特高压直流输电线路继电保护故障检测方法。首先,基于快速傅里叶变换分析特高压直流输电系统暂态故障特征,使用相模变换和小波变换提取出故障特征量作为输入数据。其次,将输入数据输入到LSTM-RNN中进行前向传播,对系统故障特征进行深度学习,同时使用反向传播方式更新网络参数,将深层的特征量输入到Softmax分类器中进行分类,把故障识别分成区外故障、母线故障和线路故障,故障分类为正极故障、负极故障和双极故障,并输出识别结果。最后,在PSCAD/EMTDC仿真条件下,搭建特高压直流输电模型。验证结果表明:所提的方法在特高压直流输电线路继电保护的故障检测、故障选极上具有更好的效果,相比于人工神经网络、卷积神经网络、支持向量机,故障识别准确率分别提升4.71%、6.57%、9.32%。 展开更多
关键词 LSTM-rnn 特高压直流输电线路 继电保护 快速傅里叶变换 故障识别
在线阅读 下载PDF
基于DA-RNN的电潜泵系统剩余使用寿命预测方法
2
作者 于继飞 姬煜晨 +4 位作者 路鑫 隋先富 彭建霖 韩国庆 杨阳 《石油机械》 北大核心 2025年第9期1-9,共9页
电潜泵是海上油田主要的人工举升设备,其运营和维护成本极高,一旦发生故障,将对油田运营造成一定的损失。为此,提出一种基于双阶段注意力机制循环神经网络(DA-RNN)的电潜泵系统剩余使用寿命预测方法。通过利用DA-RNN对电潜泵实时数据进... 电潜泵是海上油田主要的人工举升设备,其运营和维护成本极高,一旦发生故障,将对油田运营造成一定的损失。为此,提出一种基于双阶段注意力机制循环神经网络(DA-RNN)的电潜泵系统剩余使用寿命预测方法。通过利用DA-RNN对电潜泵实时数据进行特征挖掘,构建电潜泵剩余使用寿命预测模型,对电潜泵剩余使用寿命做出准确预测,为电潜泵的预测性维护提供了科学依据,显著提高了设备的可靠性和安全性。渤海油田实例分析结果表明,该剩余使用寿命预测模型的平均预测误差在28 d以内,验证了基于DA-RNN的预测模型在电潜泵剩余使用寿命预测中的实用性和准确性。研究结论为海上油田电潜泵的故障预防和维护决策制定提供了数据支持,也为运营管理提供了一种高效的数据驱动策略。 展开更多
关键词 电潜泵系统 剩余使用寿命 DA-rnn 预测模型 超参数优化 皮尔逊相关系数
在线阅读 下载PDF
一种基于TTRNN的汉语拼音全音节识别方法 被引量:1
3
作者 赵以宝 孙圣和 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2001年第2期213-216,共4页
递归神经网络(Recurrent Neural Network,RNN)是一种具有时延反馈能力的神经网;它可以充分利用上下文的信息来提高分类的程度,因而很适合汉语拼音的识别 但在实践中受网络规模的限制,能利用的上下文有... 递归神经网络(Recurrent Neural Network,RNN)是一种具有时延反馈能力的神经网;它可以充分利用上下文的信息来提高分类的程度,因而很适合汉语拼音的识别 但在实践中受网络规模的限制,能利用的上下文有限,所以对汉语拼音的分类效果并不理想.为此提出一种改进的RNN——时间标签递归神经网(TTRNN)来对汉语拼音的整音节进行直接建模识别的方法;初步的实验结果不仅证明了TTRNN方法对汉语拼音这样的时序模式有很好的分类能力,而且在拼音识别方面有很强的顽健性。 展开更多
关键词 神经网络 时间标签递归神经网络 语音识别 拼音识别 rnn TTrnn
在线阅读 下载PDF
融合RNN与稀疏自注意力的文本摘要方法 被引量:2
4
作者 刘钟 唐宏 +1 位作者 王宁喆 朱传润 《计算机工程》 北大核心 2025年第1期312-320,共9页
随着深度学习的高速发展,基于序列到序列(Seq2Seq)架构的文本摘要方法成为研究焦点,但现有大多数文本摘要模型受限于长期依赖,忽略了注意力机制复杂度以及词序信息对文本摘要生成的影响,生成的摘要丢失关键信息,偏离原文内容与意图,影... 随着深度学习的高速发展,基于序列到序列(Seq2Seq)架构的文本摘要方法成为研究焦点,但现有大多数文本摘要模型受限于长期依赖,忽略了注意力机制复杂度以及词序信息对文本摘要生成的影响,生成的摘要丢失关键信息,偏离原文内容与意图,影响用户体验。为了解决上述问题,提出一种基于Transformer改进的融合递归神经网络(RNN)与稀疏自注意力的文本摘要方法。首先采用窗口RNN模块,将输入文本按窗口划分,每个RNN对窗口内词序信息进行压缩,并通过窗口级别的表示整合为整个文本的表示,进而增强模型捕获局部依赖的能力;其次采用基于递归循环机制的缓存模块,循环缓存上一文本片段的信息到当前片段,允许模型更好地捕获长期依赖和全局信息;最后采用稀疏自注意力模块,通过块稀疏矩阵对注意力矩阵按块划分,关注并筛选出重要令牌对,而不是在所有令牌对上平均分配注意力,从而降低注意力的时间复杂度,提高长文本摘要任务的效率。实验结果表明,该方法在数据集text8、enwik8上的BPC分数相比于LoBART模型降低了0.02,在数据集wikitext-103以及ptb上的PPL分数相比于LoBART模型分别降低了1.0以上,验证了该方法的可行性与有效性。 展开更多
关键词 序列到序列架构 文本摘要 Transformer模型 递归神经网络 递归循环机制 稀疏自注意力机制
在线阅读 下载PDF
RNN与MLP融合算法在永磁同步电机谐波抑制中的应用
5
作者 李学成 郭俊杰 徐龙翔 《重庆理工大学学报(自然科学)》 北大核心 2025年第4期106-115,共10页
针对永磁同步电动机的5次和7次谐波电流问题,提出了一种循环神经网络(RNN)与多层神经网络(MLP)的电流谐波抑制算法。该算法通过2个独立的RNN网络实现电压补偿值的回归预测,并利用MLP网络对不同的预测值进行决策融合。将融合后的补偿值... 针对永磁同步电动机的5次和7次谐波电流问题,提出了一种循环神经网络(RNN)与多层神经网络(MLP)的电流谐波抑制算法。该算法通过2个独立的RNN网络实现电压补偿值的回归预测,并利用MLP网络对不同的预测值进行决策融合。将融合后的补偿值注入电机绕组,以有效抑制谐波电流。仿真与实验结果表明,该算法在抑制永磁同步电动机的5次和7次谐波电流方面性能优越,不仅提高了RNN网络算法的逼近精度,还增强了整体的谐波电流抑制效果。 展开更多
关键词 永磁同步电机 电流谐波抑制算法 循环神经网络 多层神经网络 决策融合
在线阅读 下载PDF
多因素影响下融合RNN和AUKF的 矿用锂离子电池SOC估计 被引量:1
6
作者 窦元运 张成知 封居强 《电源技术》 北大核心 2025年第4期764-771,共8页
针对矿用锂离子电池在实际应用中面临的荷电状态(SOC)估计难题,提出了一种结合递归神经网络(RNN)和自适应无迹卡尔曼滤波(AUKF)的新方法,该方法考虑了温度、倍率等多因素对SOC估计的影响。对228 Ah大容量矿用锂离子电池进行多因素影响实... 针对矿用锂离子电池在实际应用中面临的荷电状态(SOC)估计难题,提出了一种结合递归神经网络(RNN)和自适应无迹卡尔曼滤波(AUKF)的新方法,该方法考虑了温度、倍率等多因素对SOC估计的影响。对228 Ah大容量矿用锂离子电池进行多因素影响实验,构建改进的一阶RC等效电路模型。利用RNN回归分析多因素对OCV-SOC关系及模型参数的影响。采用AUKF算法对电池在不同复杂工况下的模型进行有效辨识和SOC估计。实验结果表明,该方法能够显著提高矿用锂离子电池SOC估计的准确性和鲁棒性。研究结果可为矿用设备的智能化管理和维护提供重要的技术支持。 展开更多
关键词 SOC估计 矿用锂离子电池 多因素 递归神经网络 自适应无迹卡尔曼滤波
在线阅读 下载PDF
基于帧间光流特征和改进RNN的草鱼摄食状态分类 被引量:13
7
作者 刘世晶 涂雪滢 +2 位作者 钱程 周捷 陈军 《水生生物学报》 CAS CSCD 北大核心 2022年第6期914-921,共8页
针对鱼类连续摄食行为较难识别与量化的问题,提出一种基于帧间光流特征和改进递归神经网络(Recurrent neural network, RNN)的草鱼摄食状态分类方法。首先利用偏振相机搭建户外池塘采样系统,采集不同偏振角度水面图像,并基于图像饱和度... 针对鱼类连续摄食行为较难识别与量化的问题,提出一种基于帧间光流特征和改进递归神经网络(Recurrent neural network, RNN)的草鱼摄食状态分类方法。首先利用偏振相机搭建户外池塘采样系统,采集不同偏振角度水面图像,并基于图像饱和度和亮度模型自动选择低反光角度图像,构建图像样本库;其次通过光流法提取帧间运动特征,并基于投饲机开关状态构建时间序列帧间特征样本集,然后利用样本集训练改进RNN分类网络。以上海市崇明区瑞钵水产养殖专业合作社的试验数据对该方法进行验证。结果表明,研究方法综合准确率为91%,召回率为92.2%,均优于传统的鱼类摄食行为识别方法。研究结果可为鱼类精准投喂技术研究提供参考。 展开更多
关键词 鱼类摄食 图像分类 光流法 rnn 偏振
在线阅读 下载PDF
基于BLSTM-RNN的船舶轨迹修复方法 被引量:5
8
作者 王贵槐 钟诚 +1 位作者 初秀民 张代勇 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第10期7-12,67,共7页
针对内河干线船舶AIS轨迹数缺失问题,提出一种基于双向长短时记忆网络(BLSTM-RNN)模型的船舶轨迹数据修复方法。通过利用船舶轨迹上下文信息及其他回传特征作为模型输入,构建两层的双向循环神经网络(RNN)模型。在模型输入上,采用相关性... 针对内河干线船舶AIS轨迹数缺失问题,提出一种基于双向长短时记忆网络(BLSTM-RNN)模型的船舶轨迹数据修复方法。通过利用船舶轨迹上下文信息及其他回传特征作为模型输入,构建两层的双向循环神经网络(RNN)模型。在模型输入上,采用相关性分析及序列自相关系数,确定船舶轨迹点相关变量及轨迹序列自相关滞后值;在模型结构上,以ACC率为指标对模型超参数值进行合理设置,以长江干线航道武汉段及重庆段船舶轨迹数据为样本,对模型进行实证验证。实验结果表明:与线性及其他机器学习方法相比BLSTM-RNN方法在精度上有一定提升;在武汉段顺直河段实验中,将修复误差控制在15 m量级内,远低于其他非线性方法的50 m量级;在重庆复杂河段内,可将修复误差控制在10 m量级;模型解决了传统方法在长距离丢失点上精度缺失的问题,在20个连续点丢失的情况上,将修复误差降低至50m量级。 展开更多
关键词 船舶工程 双向长短时记忆网络(BLSTM) 循环神经网络(rnn) 船舶轨迹修复 船舶自动驾驶
在线阅读 下载PDF
基于ARIMA-RNN组合模型的云服务器老化预测方法 被引量:16
9
作者 孟海宁 童新宇 +3 位作者 石月开 朱磊 冯锴 黑新宏 《通信学报》 EI CSCD 北大核心 2021年第1期163-171,共9页
针对云服务器系统运行环境具有非线性、随机性和突发性的特点,提出了基于整合移动平均自回归和循环神经网络组合模型(ARIMA-RNN)的软件老化预测方法。首先,采用ARIMA模型对云服务器时间序列数据进行老化预测;然后,利用灰色关联度分析法... 针对云服务器系统运行环境具有非线性、随机性和突发性的特点,提出了基于整合移动平均自回归和循环神经网络组合模型(ARIMA-RNN)的软件老化预测方法。首先,采用ARIMA模型对云服务器时间序列数据进行老化预测;然后,利用灰色关联度分析法计算时间序列数据的相关性,确定RNN模型的输入维度;最后,将ARIMA模型预测值和历史数据作为RNN模型的输入进行二次老化预测,从而克服了ARIMA模型对波动较大的时间序列数据预测精度较低的局限性。实验结果表明,ARIMA-RNN组合模型比ARIMA模型及RNN模型的预测精度高,且比RNN模型预测收敛速度快。 展开更多
关键词 软件老化 云服务器 预测方法 ARIMA模型 rnn模型
在线阅读 下载PDF
BP+RNN变速积分PID算法的汽车底盘测功机控制系统 被引量:12
10
作者 周洲 陈宇轩 程鑫 《机械设计与制造》 北大核心 2021年第2期148-152,共5页
高精度的PID控制算法对汽车底盘测功机运行过程中的实时控制具有重要的作用,为此提出了一种面向汽车底盘测功机的BP+RNN变速积分PID算法控制系统:引入RNN加入时序性因素整定积分项参数,利用BP神经网络整定比例项与微分项参数,使用变速积... 高精度的PID控制算法对汽车底盘测功机运行过程中的实时控制具有重要的作用,为此提出了一种面向汽车底盘测功机的BP+RNN变速积分PID算法控制系统:引入RNN加入时序性因素整定积分项参数,利用BP神经网络整定比例项与微分项参数,使用变速积分PID算法作为其控制方法。实验结果表明该PID控制系统不但能够快速整定PID参数(10个控制周期以内),同时还保证控制超调量在目标值的2%以内。与传统的增量式PID算法控制相比,BP+RNN变速积分PID算法控制系统的参数整定简单快速,消除了静态误差,使汽车底盘测功机的控制性能得到大幅改善。 展开更多
关键词 变速积分PID 控制系统 BP神经网络 rnn网络 汽车底盘测功机
在线阅读 下载PDF
基于RNN的中文二分结构句法分析 被引量:17
11
作者 谷波 王瑞波 +1 位作者 李济洪 李国臣 《中文信息学报》 CSCD 北大核心 2019年第1期35-45,共11页
为了构建一个简单易扩展的中文句法分析器,我们依据朱德熙和陆俭明先生的中文二分结构的层次分析句法理论,手工构建了一个3万句的二分结构的中文句法树库,并使用哈夫曼编码方式来简化表示完全二叉树的层次结构。该文将中文句法分析转换... 为了构建一个简单易扩展的中文句法分析器,我们依据朱德熙和陆俭明先生的中文二分结构的层次分析句法理论,手工构建了一个3万句的二分结构的中文句法树库,并使用哈夫曼编码方式来简化表示完全二叉树的层次结构。该文将中文句法分析转换为迭代二分的序列标注问题,并根据该任务的特点,提出了在词的间隔上进行标记的序列标注模型(RNN-Interval,RNN-INT),与常用的循环神经网络模型(RNN,LSTM)和条件随机场模型(CRF)进行对比实验,使用mx2交叉验证序贯t-检验来比较模型。实验结果表明,RNN-INT模型在窗口为1的词特征就可达到最好的性能,并好于其他窗口大小和其他序列标注模型(RNN,LSTM,CRF)。最后,在测试集上,在人工分词下,RNN-INT在短语级别的F1值(块F1)达到71.25%,在句子级别的准确率达到约43%。 展开更多
关键词 层次句法分析 循环神经网络(rnn) m×2CV序贯t-检验
在线阅读 下载PDF
基于Bi-RNN的风电机组主轴承温度预警方法研究 被引量:21
12
作者 尹诗 侯国莲 +3 位作者 于晓东 李宁 王其乐 弓林娟 《郑州大学学报(工学版)》 CAS 北大核心 2019年第5期44-50,共7页
主轴承是风电机组能量传递的关键设备,本文以双馈风力发电机组主轴承为研究对象,首先采用高斯混合模型(gaussian mixture model,GMM)对机组工况进行辨识;其次在各个子工况空间内建立基于双向循环神经网络(bi-directional recurrent neur... 主轴承是风电机组能量传递的关键设备,本文以双馈风力发电机组主轴承为研究对象,首先采用高斯混合模型(gaussian mixture model,GMM)对机组工况进行辨识;其次在各个子工况空间内建立基于双向循环神经网络(bi-directional recurrent neural network,Bi-RNN)的风电机组主轴承温度模型;然后,采用随机森林算法对主轴承温度模型残差进行建模与预测,从而实现机组主轴承故障预警;最后以某大型风电场机组为对象建模并开展仿真研究.结果表明,基于工况辨识的Bi-RNN神经网络算法结合随机森林算法对主轴承故障预警具有较强的实用性和较高的准确率. 展开更多
关键词 风电机组 主轴承 工况辨识 Bi-rnn 随机森林
在线阅读 下载PDF
基于RNN的倾转四旋翼无人机滑模控制
13
作者 李晨 熊晶晶 《控制工程》 北大核心 2025年第5期866-873,共8页
针对倾转四旋翼无人机处于不同倾转角的固定翼模式以及直升机模式下的位姿跟踪控制,提出一种基于循环神经网络(recurrentneuralnetwork,RNN)的自适应滑模控制策略。首先,将四旋翼动力学模型分为全驱动和欠驱动2个子系统。鉴于无人机存... 针对倾转四旋翼无人机处于不同倾转角的固定翼模式以及直升机模式下的位姿跟踪控制,提出一种基于循环神经网络(recurrentneuralnetwork,RNN)的自适应滑模控制策略。首先,将四旋翼动力学模型分为全驱动和欠驱动2个子系统。鉴于无人机存在模型参数的不确定性和外部扰动,通过循环神经网络对等效控制器进行估算,以解决使用滑模控制方法得到的等效控制器不能直接应用于无人机的问题。然后,为保证控制系统的稳定性,并削弱控制器的抖振,设计了新的切换控制器。根据Lyapunov理论,2个子系统均能到达滑模面。最后,通过对比仿真验证了所提方法的有效性。 展开更多
关键词 倾转四旋翼无人机 循环神经网络 自适应控制 滑模控制
在线阅读 下载PDF
基于改进RNN元启发式的RRT冗余机械臂路径规划
14
作者 胡江瑜 马珺杰 +1 位作者 李展 黄德青 《现代制造工程》 北大核心 2025年第9期41-52,共12页
为满足铁路接触网腕臂智能检修作业中机械臂自动导航需求,提出一种综合解决路径规划和障碍物避让问题的研究方法。该方法将双重目标转化为单一的约束优化问题。在此基础上,对标准快速搜索随机树(Rapidly exploring Random Tree,RRT)算... 为满足铁路接触网腕臂智能检修作业中机械臂自动导航需求,提出一种综合解决路径规划和障碍物避让问题的研究方法。该方法将双重目标转化为单一的约束优化问题。在此基础上,对标准快速搜索随机树(Rapidly exploring Random Tree,RRT)算法进行改进,引入地图复杂程度评估策略和高斯混合分布采样策略,以约束随机采样点的生成方向。通过加入角度约束策略和临近障碍物的变步长机制,确保随机树始终向目标点方向生长,从而规划出渐进最优的路径。此外,设计一种基于甲虫嗅觉探测的递归神经网络(Recurrent Neural Network based on Beetle Olfactory Detection,RNNBOD)算法,配置最优关节角度,驱动冗余机械臂末端执行器沿规划的参考路径移动,从而降低其计算成本。仿真结果表明,该方法不仅有效提升了标准RRT算法的搜索效率、节点利用率和路径质量,还成功解决了冗余机械臂在运行过程中的跟踪控制难题。 展开更多
关键词 接触网检修 路径规划 避障 递归神经网络算法 跟踪控制
在线阅读 下载PDF
采摘机器人SEMG手势识别研究——基于RNN循环神经网络 被引量:5
15
作者 李虹飞 胡满红 《农机化研究》 北大核心 2022年第5期212-216,共5页
为了实现采摘机器人通过手势动作进行远程控制的目标,采用MYO手环采集人体手势动作信号,将信号进行滤波、放大和A/D转换等预处理后,通过无线通信模块发送给PC机;PC机提取右移、左移和采摘等动作的特征值,送入RNN网络中进行训练和识别,... 为了实现采摘机器人通过手势动作进行远程控制的目标,采用MYO手环采集人体手势动作信号,将信号进行滤波、放大和A/D转换等预处理后,通过无线通信模块发送给PC机;PC机提取右移、左移和采摘等动作的特征值,送入RNN网络中进行训练和识别,并将识别结果以指令的方式发送给采摘机器人,控制采摘机械手进行相应操作。实验结果表明:采摘机器人SEMG手势识别算法识别率较高,结果非常理想,验证了采摘机器人通过手势进行远程控制的可行性。 展开更多
关键词 采摘机器人 手势识别 MYO rnn SEMG
在线阅读 下载PDF
基于GRU改进RNN神经网络的飞机燃油流量预测 被引量:30
16
作者 陈聪 候磊 +1 位作者 李乐乐 杨鑫涛 《科学技术与工程》 北大核心 2021年第27期11663-11673,共11页
利用从飞机快速存储记录器(quick access recorder,QAR)中获取的大量数据设计研究了一种利用循环神经网络(recurrent neural network,RNN)及其改进网络门控循环单元(gate recurrent unit,GRU)进行飞机燃油流量预测的模型。首先使用基于... 利用从飞机快速存储记录器(quick access recorder,QAR)中获取的大量数据设计研究了一种利用循环神经网络(recurrent neural network,RNN)及其改进网络门控循环单元(gate recurrent unit,GRU)进行飞机燃油流量预测的模型。首先使用基于时间的反向传播算法(back propagation trough time,BPTT)训练网络,Adam优化算法加速迭代更新神经网络权重。在参数调整实验中发现循环神经网络对历史信息利用能力不足,极易发生梯度消失与梯度爆炸,遂提出改进网络结构,引入GRU重构燃油流量预测模型。在最优的超参数条件下,重构模型在训练集和测试集上的损失函数均方误差(mean squared error,MSE)值分别为0.00108、0.00097。通过与朴素RNN的预测曲线和MSE对比可以发现,改进后的GRU网络能够“记忆”更多历史信息而不易出现梯度消失或梯度爆炸的问题,预测精度与曲线拟合能力显著提高。因此,GRU重构模型显著改善了预测能力,并通过实际案例验证该预测模型在故障诊断等领域的应用。 展开更多
关键词 燃油流量预测 rnn神经网络 GRU神经网络 BPTT算法
在线阅读 下载PDF
基于RNN-SVM的轨迹恢复方法 被引量:1
17
作者 鲁强 刘歆琦 张洋 《计算机工程与设计》 北大核心 2019年第4期976-982,共7页
针对轨迹恢复问题,根据轨迹连续性、密度和连接对时序分布特征对问题进行建模;基于此模型,提出一种基于RNN-SVM的个体轨迹恢复算法,达到恢复个体移动轨迹的目标。利用RNN网络提取连接对时序分布特征,将此特征和轨迹连续性及密度输入到SV... 针对轨迹恢复问题,根据轨迹连续性、密度和连接对时序分布特征对问题进行建模;基于此模型,提出一种基于RNN-SVM的个体轨迹恢复算法,达到恢复个体移动轨迹的目标。利用RNN网络提取连接对时序分布特征,将此特征和轨迹连续性及密度输入到SVM进行分类,获取与个体相关的轨迹。实验结果表明,该算法能够以较高的准确率从不同库中寻找到与个体相关的轨迹组。 展开更多
关键词 轨迹恢复 轨迹连接 轨迹特征 rnn网络 SVM分类
在线阅读 下载PDF
一种基于 RNN 区分 DDoS 攻击类型的方法 被引量:4
18
作者 范明钰 李珂 《信息网络安全》 CSCD 北大核心 2022年第7期1-8,共8页
随着网络技术的广泛应用,出现了多种多样的网络攻击,其中,分布式拒绝服务(Distributed Denial of Service,DDoS)攻击的危害性较大。将12种DDoS攻击的数据与正常数据流混在一起后难以区分,因此防御DDoS攻击的关键是对其进行有效区分。文... 随着网络技术的广泛应用,出现了多种多样的网络攻击,其中,分布式拒绝服务(Distributed Denial of Service,DDoS)攻击的危害性较大。将12种DDoS攻击的数据与正常数据流混在一起后难以区分,因此防御DDoS攻击的关键是对其进行有效区分。文章提出一种基于RNN区分DDoS攻击类型的方法。以循环神经网络(Recurrent Neural Network,RNN)为研究改进对象,运用了模型的模块化研究方法和技术,抽象出3类简单模块组合形成RNN-IDDoS模型,该模型具有5层、3种时间步。在公开数据集上进行实验,实验结果表明该模型的准确率可达99.8%,优于当前其他3种模型,取得了很好的区分效果。 展开更多
关键词 DDOS攻击 类型区分 rnn
在线阅读 下载PDF
基于RNN集成学习的个人轨迹恢复方法 被引量:2
19
作者 鲁强 刘歆琦 《计算机工程》 CAS CSCD 北大核心 2019年第3期188-196,201,共10页
从多个轨迹数据库中连接并恢复出较为完整的个人轨迹对出行推荐和移动导航具有重要的意义。基于个人轨迹恢复,提出RNN集成学习方法。定义个人轨迹恢复的形式化模型,利用轨迹点数目采样模式将每个训练库划分为多个训练子库,并采用RNN网... 从多个轨迹数据库中连接并恢复出较为完整的个人轨迹对出行推荐和移动导航具有重要的意义。基于个人轨迹恢复,提出RNN集成学习方法。定义个人轨迹恢复的形式化模型,利用轨迹点数目采样模式将每个训练库划分为多个训练子库,并采用RNN网络模型描述个人轨迹的可拼接程度,使用集成学习方法构建多个RNN网络,以达到恢复个人轨迹的目的。实验结果表明,该方法可以较好地捕获轨迹时空连续性特征,实现个人轨迹恢复。 展开更多
关键词 轨迹恢复 轨迹拼接 集成学习 神经网络 rnn网络
在线阅读 下载PDF
基于RNN的非线性预测语音编码 被引量:1
20
作者 张雪英 王安红 《太原理工大学学报》 CAS 2003年第3期270-272,共3页
利用递归神经网络 ( RNN)的内部记忆特性 ,改善了非线性预测过程中对语音长时相关性的预测能力。实验表明 :本文提出的基于 RNN非线性预测的 ADPCM语音编码算法 ,其恢复的语音质量优于 ITU G.72 1建议的
关键词 非线性预测 语音编码 递归神经网络 rnn 内部记忆特性 语音信号处理
在线阅读 下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部