为解决在双可重构智能超表面(Reconfigurable Intelligent Surface,RIS)系统中获取高维信道状态信息(Channel State Information,CSI)的挑战,提出了一种基于混合张量分解的多链路联合信道估计算法。首先,通过设计导频传输机制,将单反射...为解决在双可重构智能超表面(Reconfigurable Intelligent Surface,RIS)系统中获取高维信道状态信息(Channel State Information,CSI)的挑战,提出了一种基于混合张量分解的多链路联合信道估计算法。首先,通过设计导频传输机制,将单反射链路和双反射链路的接收信号分别建模为平行因子模型和平行因子塔克(Tucker)张量模型,将信道估计问题转化为混合张量因子矩阵的拟合问题。然后,考虑到多条链路之间共享的CSI,采用一种基于交替最小二乘迭代算法来分解混合张量,以有效估计出因子矩阵。最后,通过对该混合张量进行唯一性分析,与传统的Khatri-Rao分解方法相比,所提方法具备更为灵活的参数设计特点。仿真实验结果表明,该方法能够在训练块数小于RIS单元数的情况下有效估计反射链路CSI。展开更多
文摘为解决在双可重构智能超表面(Reconfigurable Intelligent Surface,RIS)系统中获取高维信道状态信息(Channel State Information,CSI)的挑战,提出了一种基于混合张量分解的多链路联合信道估计算法。首先,通过设计导频传输机制,将单反射链路和双反射链路的接收信号分别建模为平行因子模型和平行因子塔克(Tucker)张量模型,将信道估计问题转化为混合张量因子矩阵的拟合问题。然后,考虑到多条链路之间共享的CSI,采用一种基于交替最小二乘迭代算法来分解混合张量,以有效估计出因子矩阵。最后,通过对该混合张量进行唯一性分析,与传统的Khatri-Rao分解方法相比,所提方法具备更为灵活的参数设计特点。仿真实验结果表明,该方法能够在训练块数小于RIS单元数的情况下有效估计反射链路CSI。