期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
Salient Object Detection Based on a Novel Combination Framework Using the Perceptual Matching and Subjective-Objective Mapping Technologies
1
作者 Jian Han Jialu Li +3 位作者 Meng Liu Zhe Ren Zhimin Cao Xingbin Liu 《Journal of Beijing Institute of Technology》 EI CAS 2023年第1期95-106,共12页
The integrity and fineness characterization of non-connected regions and contours is a major challenge for existing salient object detection.The key to address is how to make full use of the subjective and objective s... The integrity and fineness characterization of non-connected regions and contours is a major challenge for existing salient object detection.The key to address is how to make full use of the subjective and objective structural information obtained in different steps.Therefore,by simulating the human visual mechanism,this paper proposes a novel multi-decoder matching correction network and subjective structural loss.Specifically,the loss pays different attentions to the foreground,boundary,and background of ground truth map in a top-down structure.And the perceived saliency is mapped to the corresponding objective structure of the prediction map,which is extracted in a bottom-up manner.Thus,multi-level salient features can be effectively detected with the loss as constraint.And then,through the mapping of improved binary cross entropy loss,the differences between salient regions and objects are checked to pay attention to the error prone region to achieve excellent error sensitivity.Finally,through tracking the identifying feature horizontally and vertically,the subjective and objective interaction is maximized.Extensive experiments on five benchmark datasets demonstrate that compared with 12 state-of-the-art methods,the algorithm has higher recall and precision,less error and strong robustness and generalization ability,and can predict complete and refined saliency maps. 展开更多
关键词 salient object detection subjective-objective mapping perceptional separation and matching error sensitivity non-connected region detection
在线阅读 下载PDF
RGB-T显著性目标检测综述
2
作者 吴锦涛 王安志 任春洪 《红外技术》 北大核心 2025年第1期1-9,共9页
除RGB图像外,热红外图像也能提取出对显著性目标检测至关重要的显著性信息。热红外图像随着红外传感设备的发展和普及已经变得易于获取,RGB-T显著性目标检测已成为了热门研究领域,但目前仍缺少对现有方法全面的综述。首先介绍了基于机... 除RGB图像外,热红外图像也能提取出对显著性目标检测至关重要的显著性信息。热红外图像随着红外传感设备的发展和普及已经变得易于获取,RGB-T显著性目标检测已成为了热门研究领域,但目前仍缺少对现有方法全面的综述。首先介绍了基于机器学习的RGB-T显著性目标检测方法,然后着重介绍了两类基于深度学习的RGB-T显著性目标检测方法:基于卷积神经网络和基于Vision Transformer的方法。随后对相关数据集和评价指标进行介绍,并在这些数据集上对代表性的方法进行了定性和定量的比较分析。最后对RGB-T显著性目标检测面临的挑战及未来的发展方向进行了总结与展望。 展开更多
关键词 显著性目标检测 热红外图像 rgb-t显著性目标检测 深度学习
在线阅读 下载PDF
Multi-Object Tracking with Micro Aerial Vehicle 被引量:1
3
作者 Yufeng Ji Weixing Li +2 位作者 Xiaolin Li Shikun Zhang Feng Pan 《Journal of Beijing Institute of Technology》 EI CAS 2019年第3期389-398,共10页
A simple yet efficient tracking framework is proposed for real-time multi-object tracking with micro aerial vehicles(MAVs). It's basic missions for MAVs to detect specific targets and then track them automatically... A simple yet efficient tracking framework is proposed for real-time multi-object tracking with micro aerial vehicles(MAVs). It's basic missions for MAVs to detect specific targets and then track them automatically. In our method, candidate regions are generated using the salient detection in each frame and then classified by an eural network. A kernelized correlation filter(KCF) is employed to track each target until it disappears or the peak-sidelobe ratio is lower than a threshold. Besides, we define the birth and death of each tracker for the targets. The tracker is recycled if its target disappears and can be assigned to a new target. The algorithm is evaluated on the PAFISS and UAV123 datasets. The results show a good performance on both the tracking accuracy and speed. 展开更多
关键词 multi-object TRACKING salient detection kernelized CORRELATION FILTER (KCF) micro AERIAL vehicle(MAV)
在线阅读 下载PDF
面向360度全景图像显著目标检测的相邻协调网络
4
作者 陈晓雷 王兴 +1 位作者 张学功 杜泽龙 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第12期4529-4541,共13页
为解决360°全景图像显著目标检测(SOD)中的显著目标尺度变化和边缘不连续、易模糊的问题,该文提出一种基于相邻协调网络的360°全景图像显著目标检测方法(ACoNet)。首先,利用相邻细节融合模块获取相邻特征中的细节和边缘信息,... 为解决360°全景图像显著目标检测(SOD)中的显著目标尺度变化和边缘不连续、易模糊的问题,该文提出一种基于相邻协调网络的360°全景图像显著目标检测方法(ACoNet)。首先,利用相邻细节融合模块获取相邻特征中的细节和边缘信息,以促进显著目标的精确定位。其次,使用语义引导特征聚合模块来聚合浅层特征和深层特征之间不同尺度上的语义特征信息,并抑制浅层特征传递的噪声,缓解解码阶段显著目标与背景区域不连续、边界易模糊的问题。同时构建多尺度语义融合子模块扩大不同卷积层的多尺度感受野,实现精确训练显著目标边界的效果。在2个公开的数据集上进行的大量实验结果表明,相比于其他13种先进方法,所提方法在6个客观评价指标上均有明显的提升,同时主观可视化检测的显著图边缘轮廓性更好,空间结构细节信息更清晰。 展开更多
关键词 显著目标检测 深度学习 360°全景图像 多尺度特征
在线阅读 下载PDF
集成多种上下文与混合交互的显著性目标检测 被引量:1
5
作者 夏晨星 陈欣雨 +4 位作者 孙延光 葛斌 方贤进 高修菊 张艳 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第7期2918-2931,共14页
显著性目标检测目的是识别和分割图像中的视觉显著性目标,它是计算机视觉任务及其相关领域的重要研究内容之一。当下基于全卷积网络(FCNs)的显著性目标检测方法已经取得了不错的性能,然而现实场景中的显著性目标类型多变且尺寸不固定,... 显著性目标检测目的是识别和分割图像中的视觉显著性目标,它是计算机视觉任务及其相关领域的重要研究内容之一。当下基于全卷积网络(FCNs)的显著性目标检测方法已经取得了不错的性能,然而现实场景中的显著性目标类型多变且尺寸不固定,这使得准确检测并完整分割出显著性目标仍然是一个巨大的挑战。为此,该文提出集成多种上下文和混合交互的显著性目标检测方法,通过利用密集上下文信息探索模块和多源特征混合交互模块来高效预测显著性目标。密集上下文信息探索模块采用空洞卷积、不对称卷积和密集引导连接渐进地捕获具有强关联性的多尺度和多感受野上下文信息,通过集成这些信息来增强每个初始多层级特征的表达能力。多源特征混合交互模块包含多种特征聚合操作,可以自适应交互来自多层级特征中的互补性信息,以生成用于准确预测显著性图的高质量特征表示。此方法在5个公共数据集上进行了性能测试,实验结果表明,该文方法在不同的评估指标下与19种基于深度学习的显著性目标检测方法相比取得优越的预测性能。 展开更多
关键词 计算机视觉 显著性目标检测 全卷积网络 上下文信息
在线阅读 下载PDF
基于BC^(2)FNet网络的RGB-D显著性目标检测
6
作者 王峰 程咏梅 《西北工业大学学报》 EI CAS CSCD 北大核心 2024年第6期1135-1143,共9页
面对复杂的场景图像,深度信息的引入可以大大提高显著性目标检测的性能。然而,神经网络的上采样和下采样操作会模糊显著图中目标的边界,从而降低显著性目标检测性能。针对此问题,提出了一种基于边界驱动跨模态跨层融合网络(B^(C)2FNet)... 面对复杂的场景图像,深度信息的引入可以大大提高显著性目标检测的性能。然而,神经网络的上采样和下采样操作会模糊显著图中目标的边界,从而降低显著性目标检测性能。针对此问题,提出了一种基于边界驱动跨模态跨层融合网络(B^(C)2FNet)的RGB-D显著性目标检测方法。该网络在跨模态和跨层融合中分别加入边界信息引导来保持目标区域。设计了边界生成模型,分别从RGB和深度模态的低层特征中提取2种边界信息;设计边界驱动的特征选择模块,在RGB与深度模态融合过程中,聚焦重要特征信息并保留边界细节;提出了一种边界驱动的跨层融合模块,在相邻层的上采样融合过程中加入2种边界信息。通过将该模块嵌入到自顶向下的信息融合流中,预测出包含精确目标和清晰边界的显著性图。在5种标准RGB-D数据集上进行仿真实验,结果证明所提出的模型具有较好的性能。 展开更多
关键词 显著性目标检测 边界驱动 跨模态融合 跨层融合
在线阅读 下载PDF
复杂纹理瓷砖表面缺陷检测算法研究 被引量:6
7
作者 欧阳周 张怀亮 +2 位作者 唐子暘 彭玲 俞胜 《西北工业大学学报》 EI CAS CSCD 北大核心 2022年第2期414-421,共8页
针对复杂纹理瓷砖表面缺陷检测困难的问题,提出一种基于人眼视觉注意机制的显著性目标检测方法并用于瓷砖表面缺陷检测。利用单尺度SSR光照校正方法和双边滤波方法对图像进行预处理;根据视觉注意机制中的对比度原理及高频抑制原理,针对... 针对复杂纹理瓷砖表面缺陷检测困难的问题,提出一种基于人眼视觉注意机制的显著性目标检测方法并用于瓷砖表面缺陷检测。利用单尺度SSR光照校正方法和双边滤波方法对图像进行预处理;根据视觉注意机制中的对比度原理及高频抑制原理,针对复杂背景纹理的“成像性”与“聚集性”特征,建立基于视觉注意机制的检测模型,根据视觉注意机制中的对比性原理和高频抑制原理对瓷砖表面进行特征提取,再依据图像的显著性准则得到图像颜色斑块权重显著图和图像特征融合显著图并将两者融合,进行缺陷的判定和标记,最终得到已标记的瓷砖缺陷。将此缺陷检测算法和另外2种算法应用于随机选取的3类复杂纹理瓷砖并进行对比实验,结果表明,相比较于其他算法,此算法对复杂纹理瓷砖的缺陷检测达到96%以上的综合检测率,可以获得良好的瓷砖缺陷检测效果。 展开更多
关键词 缺陷检测 显著性目标检测 光照校正 复杂纹理 视觉注意机制
在线阅读 下载PDF
基于改进ViBe算法与三帧差法的运动检测算法 被引量:14
8
作者 杨依忠 张强 汪鹏飞 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2018年第8期1052-1058,共7页
针对ViBe(visual background extractor)算法存在的鬼影和漏检问题,文章提出了一种基于改进ViBe算法和三帧差法的运动目标检测的方法。首先针对ViBe算法检测结果存在鬼影的问题提出一种改进的方法,改变ViBe算法中仅通过第1帧建立背景模... 针对ViBe(visual background extractor)算法存在的鬼影和漏检问题,文章提出了一种基于改进ViBe算法和三帧差法的运动目标检测的方法。首先针对ViBe算法检测结果存在鬼影的问题提出一种改进的方法,改变ViBe算法中仅通过第1帧建立背景模型的方式;该文在前5帧中每个像素点的邻域随机选取4个像素点建立一种具有时间和空间信息的背景模型进行运动检测,并采用"或"类型三帧差法做"或"运算改善漏检的问题;然后对显著性检测结果做"与"运算去除过检点以提高运动目标检测的准确性;最后进行适当地后处理得到最终的检测结果。该算法能够去除噪声、抑制鬼影以及减少空洞点,实验结果表明能够快速并准确地检测出运动目标。 展开更多
关键词 运动目标检测 背景减除法 三帧差法 显著性物体
在线阅读 下载PDF
基于显著性目标检测的葡萄叶片病害分割 被引量:7
9
作者 王书志 乔虹 +1 位作者 冯全 张建华 《湖南农业大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第1期101-107,共7页
为提高葡萄叶片病害图像中病斑分割性能,提出了一种基于显著性目标检测的病斑分割方法。采用显著性目标检测网络来生成葡萄病害叶片图像的显著性图,通过多种分辨率的网格结构提取图像局部和全局信息,并将它们融合成预测特征;再对病害叶... 为提高葡萄叶片病害图像中病斑分割性能,提出了一种基于显著性目标检测的病斑分割方法。采用显著性目标检测网络来生成葡萄病害叶片图像的显著性图,通过多种分辨率的网格结构提取图像局部和全局信息,并将它们融合成预测特征;再对病害叶片的显著性图用自适应阈值法分割出叶片上的病害区域,并用形态学方法进行后处理。结果表明,在测试集A上,所建立的方法对病斑分割性能指标马修斯相关系数(MCC)为0.625,略低于对比算法全卷积神经网络(FCN)的0.689,但在衡量泛化性能的测试集B上,所建立方法的MCC为0.338,远高于FCN的0.072,说明所建立方法在分割精度和泛化性方面具有较好的平衡性。 展开更多
关键词 葡萄叶片病害 分割 显著性目标检测
在线阅读 下载PDF
融合显著深度特征的RGB-D图像显著目标检测 被引量:9
10
作者 吴建国 邵婷 刘政怡 《电子与信息学报》 EI CSCD 北大核心 2017年第9期2148-2154,共7页
深度信息被证明是人类视觉的重要组成部分,然而大部分显著性检测工作侧重于2维图像上的方法,并不能很好地利用深度进行RGB-D图像显著性检测。该文提出一种融合显著深度特征的RGB-D图像显著目标检测方法,提取基于颜色和深度显著图的综合... 深度信息被证明是人类视觉的重要组成部分,然而大部分显著性检测工作侧重于2维图像上的方法,并不能很好地利用深度进行RGB-D图像显著性检测。该文提出一种融合显著深度特征的RGB-D图像显著目标检测方法,提取基于颜色和深度显著图的综合特征,根据构图先验和背景先验的方法进行显著目标检测。首先,对原始深度图进行预处理:使用背景顶点区域、构图交点和紧密度处理深度图,多角度融合形成深度显著图,并作为显著深度特征,结合颜色特征形成综合特征;其次,从前景角度,将综合特征通过边连接权重构造关联矩阵,根据构图先验,假设多层中心矩形为前景种子,通过流形排序方法计算出RGB-D图像的前景显著图;从背景角度,根据背景先验以及边界连通性计算出背景显著图;最后,将前景显著图和背景显著图进行融合并优化得到最终显著图。实验采用RGB-D1000数据集进行显著性检测,并与4种不同的方法进行对比,所提方法的显著性检测结果更接近人工标定结果,PR(查准率-查全率)曲线显示在相同召回率下准确率高于其他方法。 展开更多
关键词 显著目标检测 显著深度特征 多层中心矩形 流形排序 构图先验 背景先验
在线阅读 下载PDF
一种基于图的流形排序的显著性目标检测改进方法 被引量:8
11
作者 吕建勇 唐振民 《电子与信息学报》 EI CSCD 北大核心 2015年第11期2555-2563,共9页
该文针对现有的基于图的流形排序的显著性目标检测方法中仅使用k-正则图刻画各个节点的空间连接性的不足以及先验背景假设过于理想化的缺陷,提出一种改进的方法,旨在保持高查全率的同时,提高准确率。在构造图模型时,先采用仿射传播聚类... 该文针对现有的基于图的流形排序的显著性目标检测方法中仅使用k-正则图刻画各个节点的空间连接性的不足以及先验背景假设过于理想化的缺陷,提出一种改进的方法,旨在保持高查全率的同时,提高准确率。在构造图模型时,先采用仿射传播聚类将各超像素(节点)自适应地划分为不同的颜色类,在传统的k-正则图的基础上,将属于同一颜色类且空间上位于同一连通区域的各个节点也连接在一起;而在选取背景种子点时,根据边界连接性赋予位于图像边界的超像素不同的背景权重,采用图割方法筛选出真正的背景种子点;最后,采用经典的流形排序算法计算显著性。在常用的MSRA-1000和复杂的SOD数据库上同7种流行算法的4种量化评价指标的实验对比证明了所提改进算法的有效性和优越性。 展开更多
关键词 显著性目标检测 改进的图模型 流形排序 边界连接性 连通区域
在线阅读 下载PDF
基于加权的K近邻线性混合显著性目标检测 被引量:5
12
作者 李炜 李全龙 刘政怡 《电子与信息学报》 EI CSCD 北大核心 2019年第10期2442-2449,共8页
显著性目标检测旨在于一个场景中自动检测能够引起人类注意的目标或区域,在自底向上的方法中,基于多核支持向量机(SVM)的集成学习取得了卓越的效果。然而,针对每一张要处理的图像,该方法都要重新训练,每一次训练都非常耗时。因此,该文... 显著性目标检测旨在于一个场景中自动检测能够引起人类注意的目标或区域,在自底向上的方法中,基于多核支持向量机(SVM)的集成学习取得了卓越的效果。然而,针对每一张要处理的图像,该方法都要重新训练,每一次训练都非常耗时。因此,该文提出一个基于加权的K近邻线性混合(WKNNLB)显著性目标检测方法:利用现有的方法来产生初始的弱显著图并获得训练样本,引入加权的K近邻(WKNN)模型来预测样本的显著性值,该模型不需要任何训练过程,仅需选择一个最优的K值和计算与测试样本最近的K个训练样本的欧式距离。为了减少选择K值带来的影响,多个加权的K近邻模型通过线性混合的方式融合来产生强的显著图。最后,将多尺度的弱显著图和强显著图融合来进一步提高检测效果。在常用的ASD和复杂的DUT-OMRON数据集上的实验结果表明了该算法在运行时间和性能上的有效性和优越性。当采用较好的弱显著图时,该算法能够取得更好的效果。 展开更多
关键词 显著性目标检测 集成学习 线性混合 加权的K近邻
在线阅读 下载PDF
基于双层多尺度神经网络的显著性对象检测算法 被引量:1
13
作者 李鑫 陈雷霆 +2 位作者 蔡洪斌 李建平 杨帆 《微电子学与计算机》 CSCD 北大核心 2018年第11期1-7,共7页
为了提高显著性对象检测的准确率,本文提出一种基于双层多尺度神经网络的深度模型.不同于现有的深度神经网络模型.首先,该模型以由精到粗的方式进行深度特征学习,并且定位显著性对象的初始位置;然后,以由粗到精的方式整合多尺度上下文... 为了提高显著性对象检测的准确率,本文提出一种基于双层多尺度神经网络的深度模型.不同于现有的深度神经网络模型.首先,该模型以由精到粗的方式进行深度特征学习,并且定位显著性对象的初始位置;然后,以由粗到精的方式整合多尺度上下文语义信息,从而精确检测整个显著性对象区域,输出相应的显著性图;最后,为了进一步提高检测结果的准确率,利用全连接条件随机场对输出的显著性图进行优化,得到最终的显著性对象检测结果.在多个显著性对象检测公共数据集的验证结果表明,本文算法在运行效率和准确率上均优于当前传统显著性对象检测算法以及现有的基于深度学习的显著性对象检测算法. 展开更多
关键词 显著性对象检测 深度学习 深度卷积网络 条件随机场
在线阅读 下载PDF
超像素和阈值分割相结合的显著目标检测算法 被引量:3
14
作者 张晴 林家骏 《现代电子技术》 北大核心 2016年第14期95-99,105,共6页
现有的显著性检测结果普遍含噪及未能完整高亮显著物体,使得后续的显著目标检测仍是一个具有挑战性的问题。提出了一种结合超像素分割和阈值分割的新的显著目标检测算法。算法首先利用超像素分割方法对原图像进行分割计算,然后依据显著... 现有的显著性检测结果普遍含噪及未能完整高亮显著物体,使得后续的显著目标检测仍是一个具有挑战性的问题。提出了一种结合超像素分割和阈值分割的新的显著目标检测算法。算法首先利用超像素分割方法对原图像进行分割计算,然后依据显著性检测结果计算每一个分割区域像素的平均显著度值,接着用平均显著度值表示超像素内每一个像素的原显著度值,最后根据阈值分割算法对其进行计算获取二值掩码图以表示显著目标检测结果。实验结果表明,在4种具有代表性的显著图上,所提算法能有效检测显著目标,具有较高的正确率、召回率和F度量值。 展开更多
关键词 显著目标检测 超像素分割 阈值分割 感兴趣区域
在线阅读 下载PDF
边缘信息引导多级尺度特征融合的显著性目标检测方法 被引量:1
15
作者 王向军 李名洋 +2 位作者 王霖 刘峰 王玮 《红外与激光工程》 EI CSCD 北大核心 2023年第1期253-262,共10页
针对基于FCN和U型网络架构的深度学习显著性目标检测方法提取的显著性图存在边界不清晰和结构不完整的问题,文中提出了一种基于边缘信息引导多级尺度特征融合网络(EGMFNet)。EGMFNet使用多通道融合残差块(RCFBlock)以嵌套的U型网络架构... 针对基于FCN和U型网络架构的深度学习显著性目标检测方法提取的显著性图存在边界不清晰和结构不完整的问题,文中提出了一种基于边缘信息引导多级尺度特征融合网络(EGMFNet)。EGMFNet使用多通道融合残差块(RCFBlock)以嵌套的U型网络架构作为主干模型。同时,在网络的较低层级引入具有边缘信息引导的全局空间注意力模块(EGSAM)以增强空间特征及边缘特征。此外,在损失函数中引入了图像边界损失,用于提升显著性图的质量并在学习过程中保留更加清晰的边界。在四个基准数据集上进行实验,实验结果表明,文中方法的F值较典型方法提升1.5%、2.7%、1.8%和1.6%,验证了EGMFNet网络模型的有效性。 展开更多
关键词 显著性目标检测 多尺度特征融合 边缘信息引导 空间注意力模块 边界损失函数
在线阅读 下载PDF
基于深度学习的显著性目标检测方法综述 被引量:19
16
作者 罗会兰 袁璞 童康 《电子学报》 EI CAS CSCD 北大核心 2021年第7期1417-1427,共11页
显著性目标检测旨在对图像中最显著的对象进行检测和分割,是计算机视觉任务中重要的预处理步骤之一,且在信息检索、公共安全等领域均有广泛的应用.本文对近期基于深度学习的显著性目标检测模型进行了系统综述,从检测粒度的角度出发,综... 显著性目标检测旨在对图像中最显著的对象进行检测和分割,是计算机视觉任务中重要的预处理步骤之一,且在信息检索、公共安全等领域均有广泛的应用.本文对近期基于深度学习的显著性目标检测模型进行了系统综述,从检测粒度的角度出发,综述了将深度学习引入显著性目标检测领域之后的研究成果.首先,从三个方面对显著性目标检测方法进行了论述:稀疏检测方法,密集检测方法以及弱监督学习下的显著性目标检测方法.然后,简要介绍了用于显著性目标检测研究的主流数据集和常用性能评价指标,并对各类主流模型在三个使用最广泛的数据集上进行了性能比较分析.最后,本文分析了显著性目标检测领域目前存在的问题,并对今后可能的研究趋势进行了展望. 展开更多
关键词 显著性目标检测 深度学习 卷积神经网络 视觉显著性 弱监督学习 计算机视觉任务
在线阅读 下载PDF
多尺度特征提取和多级别特征融合的显著性目标检测方法 被引量:7
17
作者 黎玲利 孟令兵 李金宝 《工程科学与技术》 EI CAS CSCD 北大核心 2021年第1期170-177,共8页
显著性目标检测已经被广泛应用到图像检索、图像分割、行人重识别等领域。目前主流的显著性目标检测方法通常采用短连接加权的方式融合多级别特征信息,这种方式无法精准有效地控制信息流的传递。而且,现有的检测方法通常采用单一的特征... 显著性目标检测已经被广泛应用到图像检索、图像分割、行人重识别等领域。目前主流的显著性目标检测方法通常采用短连接加权的方式融合多级别特征信息,这种方式无法精准有效地控制信息流的传递。而且,现有的检测方法通常采用单一的特征检测,导致显著性目标区域与背景的边界不连续、易模糊。因此,本文提出一种多尺度特征提取和多级别特征融合的显著性目标检测方法。首先,利用不同扩张率的空洞卷积获取多尺度的上下文信息,弥补单一特征检测带来的不足。其次,提出一个多级别特征融合模块,该模块有效地利用浅层特征信息、深层特征信息和全局上下文特征信息之间的分布特性进行融合,不仅可以抑制噪声的传递,而且可以更有效地恢复显著性目标的空间细节结构信息。同时构建一个简洁的注意力模块,该模块有效保留特征图融合后的通道信息。本文对综合指标、平均绝对误差、结构化度量、精确率-召回率曲线和F-measure曲线进行了实验评估,在5个公开的数据集上进行的实验结果表明:相比于其他13种主流的检测方法,本文方法在不同的评估指标上均有明显的提升,在4个数据集上的综合指标和结构化度量指标均超过其他方法;并且,本文方法的可视化检测的显著图边缘轮廓连续性更好,空间结构细节信息更清晰。 展开更多
关键词 显著性检测 多尺度特征提取 多级别特征融合 显著图 深度学习
在线阅读 下载PDF
基于外轮廓模糊处理的多尺度目标检测 被引量:1
18
作者 程艳云 朱松豪 石路路 《南京邮电大学学报(自然科学版)》 北大核心 2018年第2期78-86,共9页
文中提出一种基于外轮廓模糊处理的多尺度目标检测方法。由于目标背景区域通常与图像边界相连接,因此,文中通过计算与图像边界的距离提取显著目标,且利用超像素过分割提高处理效率。具体而言,首先对图像进行超像素分割;然后,依据超像素... 文中提出一种基于外轮廓模糊处理的多尺度目标检测方法。由于目标背景区域通常与图像边界相连接,因此,文中通过计算与图像边界的距离提取显著目标,且利用超像素过分割提高处理效率。具体而言,首先对图像进行超像素分割;然后,依据超像素与图像边界距离生成最小树,并以此获得显著目标的初步检测结果;接下来,利用快速轮廓检测法提取显著目标的外轮廓信息;最后,利用模糊色差直方图及多尺度方法获得显著目标的准确检测结果。实验结果表明,与现有方法相比,文中所提算法在效率和精度上具有一定优势。 展开更多
关键词 显著目标检测 最小生成树 外轮廓提取 模糊色差直方图 多尺度检测
在线阅读 下载PDF
基于低级特征图最优融合的显著性目标检测 被引量:2
19
作者 王玉 彭晓明 《电子设计工程》 2017年第6期181-184,189,共5页
针对低水平特征显著性目标检测算法在检测图像时不能检测到不同大小的目标,而且精确度较低的问题。提出一种新的算法,通过将颜色分布,方向对比度以及基于频率信息这3种特征运用条件随机场进行最优全值线性融合后,得到更精确的显著性目... 针对低水平特征显著性目标检测算法在检测图像时不能检测到不同大小的目标,而且精确度较低的问题。提出一种新的算法,通过将颜色分布,方向对比度以及基于频率信息这3种特征运用条件随机场进行最优全值线性融合后,得到更精确的显著性目标。通过与10种经典的显著性目标检测算法进行的定量和定性的对比,实验结果表明,提出的算法不仅可以有效地检测到大、中、小显著性目标,而且检测的效果比其他算法精确度高。 展开更多
关键词 显著性目标检测 颜色分布 方向对比度 基于频域信息
在线阅读 下载PDF
复杂场景下特征增强的显著性目标检测方法 被引量:1
20
作者 李波 饶浩波 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第11期135-144,共10页
全卷积神经网络(FCN)高效的特征提取能力极大地提升了显著性目标检测算法的性能。然而现有算法依靠简单的特征拼接或相加等融合策略无法有效地增强特征,导致算法在复杂场景中的目标误检和漏检问题依然突出。文中提出基于场景的针对性特... 全卷积神经网络(FCN)高效的特征提取能力极大地提升了显著性目标检测算法的性能。然而现有算法依靠简单的特征拼接或相加等融合策略无法有效地增强特征,导致算法在复杂场景中的目标误检和漏检问题依然突出。文中提出基于场景的针对性特征增强方法来提高显著性目标检测算法的性能。首先,目标误检多发生于背景复杂且目标和背景元素交织的场景,文中分别从特征全局性增强和特征结构化增强角度解决目标误检问题;其次,针对目标漏检一般发生在目标的内部和边缘,基于残差学习从背景中学习丢失目标的信息,修复丢失的目标内部和边缘区域;最后,在5个基准数据集上与其他13种先进的方法进行实验对比,结果表明文中所提模型的各性能评价指标均优于其他13种方法,显著地解决了复杂场景中的目标误检和漏检问题。 展开更多
关键词 全卷积神经网络 显著性目标检测 特征增强 目标误检 目标漏检
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部