Warehouse operation has become a critical activity in supply chain. Position information of pallets is important in warehouse management which can enhance the efficiency of pallets picking and sortation. Radio frequen...Warehouse operation has become a critical activity in supply chain. Position information of pallets is important in warehouse management which can enhance the efficiency of pallets picking and sortation. Radio frequency identification(RFID) has been widely used in warehouse for item identifying. Meanwhile, RFID technology also has great potential for pallets localization which is underutilized in warehouse management. RFID-based checking-in and inventory systems have been applied in warehouse management by many enterprises. Localization approach is studied, which is compatible with existing RFID checking-in and inventory systems. A novel RFID localization approach is proposed for pallets checking-in. Phase variation of nearby tags was utilized to estimate the position of added pallets. A novel inventory localization approach combing angle of arrival(AOA) measurement and received signal strength(RSS) is also proposed for pallets inventory. Experiments were carried out using standard UHF passive RFID system. Experimental results show an acceptable localization accuracy which can satisfy the requirement of warehouse management.展开更多
In radio frequency identification(RFID) systems,one of the most widely used anti-collision algorithms is the dynamic framed slotted ALOHA(DFSA)algorithm which usually uses two methods,one is tag estimation method (TEM...In radio frequency identification(RFID) systems,one of the most widely used anti-collision algorithms is the dynamic framed slotted ALOHA(DFSA)algorithm which usually uses two methods,one is tag estimation method (TEM) which estimates the number of tags around the reader,and the other is dynamic slot allocation (DSA) method which is the method to dynamically allocate the frame size according to the number of tags.DFSA can achieve optimal system performance when the frame size is equal to the number of tags.As the number of tags becomes large,DFSA is not practical to increase the frame size infinitely,thus the application of DFSA algorithm is limited.In this paper a TEM method and a DSA method are proposed from two novel aspects respectively in order to use DFSA algorithm more effectively,and the analysis and comparison are given subsequently.Meanwhile,the improved DFSA algorithm is proposed to solve the problem of DFSA algorithm.When the number of tags is large,if the improved DFSA algorithm is applied,the system efficiency that can be attained is not less than 50%.展开更多
目的确保物品包装上的超高频射频识别(Radio Frequency Identification,RFID)标签一致性关键指标符合相关标准,解决现有文献对一致性关键指标阐述不全面的问题,基于ISO/IEC 18000-63和ISO/IEC 18047-63对一致性关键指标的测试方法展开...目的确保物品包装上的超高频射频识别(Radio Frequency Identification,RFID)标签一致性关键指标符合相关标准,解决现有文献对一致性关键指标阐述不全面的问题,基于ISO/IEC 18000-63和ISO/IEC 18047-63对一致性关键指标的测试方法展开研究。方法在对现有一致性测试方法进行研究阐述的基础上,改进了状态跳转和截断响应的测试方法,提升了测试准确性;设计了一种时隙计数器测试方法,该方法通过改变Q值和重复发送QueryRep命令,验证时隙计数器在非0到0的变化过程中,标签有且仅有一次响应,从而避免出现多个标签同时应答的现象。结果应用改进及新设计的测试方法对指定标签进行测试,结果符合标准。结论较为全面地实现了对RFID标签的客观验证和有效评估,对提升RFID标签在实际应用中的可靠性具有重要意义。展开更多
研究设计并实现了一种基于U型谐振单元的无芯片射频识别(radio frequency identification,RFID)技术湿度传感器,该传感器结合Vivaldi宽频段天线,构建了一套无线无源的湿度传感系统,可实现对环境湿度的实时监测。无芯片RFID湿度传感器由8...研究设计并实现了一种基于U型谐振单元的无芯片射频识别(radio frequency identification,RFID)技术湿度传感器,该传感器结合Vivaldi宽频段天线,构建了一套无线无源的湿度传感系统,可实现对环境湿度的实时监测。无芯片RFID湿度传感器由8个U型谐振单元和1条与之耦合的微带线构成。在该设计中,两侧对称的谐振单元用于校准环境温度对湿度传感器的影响,其中1个单元由聚乙烯醇(polyvinyl alcohol,PVA)湿敏材料覆盖;中间6个U型单元用于RFID湿度传感器的ID信息编码。此外,本工作采用矩形环开槽技术优化了宽频带Vivaldi天线,并结合传感器实现了无线无源湿度传感。有线实验数据显示,在57%RH~71%RH的相对湿度范围内,产生了118 MHz的频率偏移,平均灵敏度为8.4 MHz/%RH。无线实验结果显示,在49%RH~70%RH的相对湿度范围内,产生了103 MHz的频率偏移,平均灵敏度为4.9 MHz/%RH。实验结果表明该无线无源湿度传感装置具有较高的检测灵敏度,可为无线无源湿度检测提供重要的解决方案。展开更多
随着电力物联网技术的快速发展,建设能源互联网具有重大意义。电力物联终端设备的识别认证是保障能源互联网安全稳定运行的基础。为实现海量电力终端设备信息高效采集与安全认证,研究提出一种面向电力物联网的RFID(radio frequency iden...随着电力物联网技术的快速发展,建设能源互联网具有重大意义。电力物联终端设备的识别认证是保障能源互联网安全稳定运行的基础。为实现海量电力终端设备信息高效采集与安全认证,研究提出一种面向电力物联网的RFID(radio frequency identification)认证方案,该方案利用RFID技术,基于国密SM3和SM4设计算法,实现了阅读器与电力设备之间的相互认证,保障了电力通信数据的传输安全,降低设备标签的计算复杂度。安全性分析表明,该方案满足不可追踪性、抗重放攻击、抗去同步攻击、抗拒绝服务攻击等安全特性,BAN逻辑分析进一步表明该方案满足相互认证性。性能分析表明,该方案在标签计算量、存储量、通信量及数据库搜索效率方面具有较好的性能优势。展开更多
基金Project(2009BADB9B09)supported by the National Key Technologies R&D Program of China
文摘Warehouse operation has become a critical activity in supply chain. Position information of pallets is important in warehouse management which can enhance the efficiency of pallets picking and sortation. Radio frequency identification(RFID) has been widely used in warehouse for item identifying. Meanwhile, RFID technology also has great potential for pallets localization which is underutilized in warehouse management. RFID-based checking-in and inventory systems have been applied in warehouse management by many enterprises. Localization approach is studied, which is compatible with existing RFID checking-in and inventory systems. A novel RFID localization approach is proposed for pallets checking-in. Phase variation of nearby tags was utilized to estimate the position of added pallets. A novel inventory localization approach combing angle of arrival(AOA) measurement and received signal strength(RSS) is also proposed for pallets inventory. Experiments were carried out using standard UHF passive RFID system. Experimental results show an acceptable localization accuracy which can satisfy the requirement of warehouse management.
基金supported in part by the Program for New Century Excellent Talents in University in China(No.NCET-06-0510)National Natural Science Foundation of China (No. 60874091)the Natural Science Basic Research Project for Universities of Jiangsu Province(No. 08KJD510022)
文摘In radio frequency identification(RFID) systems,one of the most widely used anti-collision algorithms is the dynamic framed slotted ALOHA(DFSA)algorithm which usually uses two methods,one is tag estimation method (TEM) which estimates the number of tags around the reader,and the other is dynamic slot allocation (DSA) method which is the method to dynamically allocate the frame size according to the number of tags.DFSA can achieve optimal system performance when the frame size is equal to the number of tags.As the number of tags becomes large,DFSA is not practical to increase the frame size infinitely,thus the application of DFSA algorithm is limited.In this paper a TEM method and a DSA method are proposed from two novel aspects respectively in order to use DFSA algorithm more effectively,and the analysis and comparison are given subsequently.Meanwhile,the improved DFSA algorithm is proposed to solve the problem of DFSA algorithm.When the number of tags is large,if the improved DFSA algorithm is applied,the system efficiency that can be attained is not less than 50%.
文摘目的确保物品包装上的超高频射频识别(Radio Frequency Identification,RFID)标签一致性关键指标符合相关标准,解决现有文献对一致性关键指标阐述不全面的问题,基于ISO/IEC 18000-63和ISO/IEC 18047-63对一致性关键指标的测试方法展开研究。方法在对现有一致性测试方法进行研究阐述的基础上,改进了状态跳转和截断响应的测试方法,提升了测试准确性;设计了一种时隙计数器测试方法,该方法通过改变Q值和重复发送QueryRep命令,验证时隙计数器在非0到0的变化过程中,标签有且仅有一次响应,从而避免出现多个标签同时应答的现象。结果应用改进及新设计的测试方法对指定标签进行测试,结果符合标准。结论较为全面地实现了对RFID标签的客观验证和有效评估,对提升RFID标签在实际应用中的可靠性具有重要意义。
文摘随着电力物联网技术的快速发展,建设能源互联网具有重大意义。电力物联终端设备的识别认证是保障能源互联网安全稳定运行的基础。为实现海量电力终端设备信息高效采集与安全认证,研究提出一种面向电力物联网的RFID(radio frequency identification)认证方案,该方案利用RFID技术,基于国密SM3和SM4设计算法,实现了阅读器与电力设备之间的相互认证,保障了电力通信数据的传输安全,降低设备标签的计算复杂度。安全性分析表明,该方案满足不可追踪性、抗重放攻击、抗去同步攻击、抗拒绝服务攻击等安全特性,BAN逻辑分析进一步表明该方案满足相互认证性。性能分析表明,该方案在标签计算量、存储量、通信量及数据库搜索效率方面具有较好的性能优势。