Aiming at a comprehensive assessment of energy-saving retrofitting effect on existing buildings,a calculation method is developed to adjust energy-saving quantity in standard condition for comparison under the same co...Aiming at a comprehensive assessment of energy-saving retrofitting effect on existing buildings,a calculation method is developed to adjust energy-saving quantity in standard condition for comparison under the same conditions. A mathematical model,method theory and calculation steps are given. Error analysis results show that this method can be applied accurately to practical engineering projects. In a case study of energy-saving quantity assessment before and after retrofitting on a certain hospital in Shanghai,with energy simulation software TRNSYS,detailed application of this method is introduced and analyzed. The method is applied to the case of energy-saving quantity assessment to a hospital in Shanghai before and after retrofitting with the energy simulation software TRNSYS.展开更多
Polyurea coating and carbon fibre reinforced polymer reinforcing techniques were applied to retrofit a severely damaged urban utility tunnel(UUT).The blast responses of the retrofitted UUT were investigated through in...Polyurea coating and carbon fibre reinforced polymer reinforcing techniques were applied to retrofit a severely damaged urban utility tunnel(UUT).The blast responses of the retrofitted UUT were investigated through in-filed explosion experimental tests,and the displacements,strains,accelerations,and damage were compared.The retrofitted UUT exhibited comparable or even better blast resistance than the intact UUT.Although the polyurea coating was flexible,it exhibited excellent performance in improving the blast resistance of the damaged UUT.As the UUT reinforced with basalt fibre reinforce polymer(BFRP)bars has smaller damage compared with the UUT reinforced with steel bars,its retrofitting is simple,and the cost is low.The roof was simplified as an elastically simple support one-way slab.Euler beam theory was adopted to analyse the dynamic responses of UUT roof considering the interaction between soil and structure,which agree well with the experiments in the first three cases.展开更多
This paper presents two possible construction methods that could be adopted in the Wenchuan post-earthquake reconstruction.One is the composite tubular construction and the other is FRP(Fibre Reinforced Polymer) retro...This paper presents two possible construction methods that could be adopted in the Wenchuan post-earthquake reconstruction.One is the composite tubular construction and the other is FRP(Fibre Reinforced Polymer) retrofitting technology.The background of these two methods,the existing research and relevance to Whenchuan post-earthquake reconstruction are described.展开更多
随着碳中和目标的推进,综合能源系统(integrated energy system,IES)以其多能耦合、能量梯级利用等优势,逐渐成为能源供应的重要发展方向。在具有差异化用能需求的多功能区IES之间实现协同规划与调度,对提高系统经济性、降低系统碳排放...随着碳中和目标的推进,综合能源系统(integrated energy system,IES)以其多能耦合、能量梯级利用等优势,逐渐成为能源供应的重要发展方向。在具有差异化用能需求的多功能区IES之间实现协同规划与调度,对提高系统经济性、降低系统碳排放有着重要作用。然而,由于碳捕集机组、多类型氢能利用设备等低碳元件的接入以及可再生能源发电的不断增加,随之而来的元件模型非凸性与系统内多类型不确定性对系统规划的影响亟需研究。对此,该文考虑了机组低碳改造和氢能多模式利用低碳特性,提出了一种针对多功能区综合能源系统的不确定性协同规划方法。首先,详细分析了多功能区供/用能特性与多能互补关系,构建了具有分区差异化特征的多功能区设备规划策略。其次,建立了低碳改造后的热电联产机组和氢能多模式利用设备的数学模型,并对其低碳特性进行了分析。基于此,为应对规划周期内系统低碳改造成本的不确定性和短期内可再生能源出力的不确定性,提出了一种混合长-短期不确定性的多功能区IES协同规划模型。通过基于二进制扩展的凸包线性化方法,对所提规划模型中的非线性约束进行凸化,并采用相应的迭代收缩求解算法实现模型的有效求解。最后,通过某实际多功能区IES算例进行仿真,结果验证了所提模型和所用算法的有效性。展开更多
基金Project(2006BAJ03A10) supported by the National Key Technologies R & D Program of China
文摘Aiming at a comprehensive assessment of energy-saving retrofitting effect on existing buildings,a calculation method is developed to adjust energy-saving quantity in standard condition for comparison under the same conditions. A mathematical model,method theory and calculation steps are given. Error analysis results show that this method can be applied accurately to practical engineering projects. In a case study of energy-saving quantity assessment before and after retrofitting on a certain hospital in Shanghai,with energy simulation software TRNSYS,detailed application of this method is introduced and analyzed. The method is applied to the case of energy-saving quantity assessment to a hospital in Shanghai before and after retrofitting with the energy simulation software TRNSYS.
基金supported by National Natural Science Foundation of China[51778622]Social Development Project of Science and Technology Department of Jiangsu Province[BE2017780]Jiangsu Natural Science Foundation Youth Project[BK20190573]。
文摘Polyurea coating and carbon fibre reinforced polymer reinforcing techniques were applied to retrofit a severely damaged urban utility tunnel(UUT).The blast responses of the retrofitted UUT were investigated through in-filed explosion experimental tests,and the displacements,strains,accelerations,and damage were compared.The retrofitted UUT exhibited comparable or even better blast resistance than the intact UUT.Although the polyurea coating was flexible,it exhibited excellent performance in improving the blast resistance of the damaged UUT.As the UUT reinforced with basalt fibre reinforce polymer(BFRP)bars has smaller damage compared with the UUT reinforced with steel bars,its retrofitting is simple,and the cost is low.The roof was simplified as an elastically simple support one-way slab.Euler beam theory was adopted to analyse the dynamic responses of UUT roof considering the interaction between soil and structure,which agree well with the experiments in the first three cases.
文摘This paper presents two possible construction methods that could be adopted in the Wenchuan post-earthquake reconstruction.One is the composite tubular construction and the other is FRP(Fibre Reinforced Polymer) retrofitting technology.The background of these two methods,the existing research and relevance to Whenchuan post-earthquake reconstruction are described.
文摘随着碳中和目标的推进,综合能源系统(integrated energy system,IES)以其多能耦合、能量梯级利用等优势,逐渐成为能源供应的重要发展方向。在具有差异化用能需求的多功能区IES之间实现协同规划与调度,对提高系统经济性、降低系统碳排放有着重要作用。然而,由于碳捕集机组、多类型氢能利用设备等低碳元件的接入以及可再生能源发电的不断增加,随之而来的元件模型非凸性与系统内多类型不确定性对系统规划的影响亟需研究。对此,该文考虑了机组低碳改造和氢能多模式利用低碳特性,提出了一种针对多功能区综合能源系统的不确定性协同规划方法。首先,详细分析了多功能区供/用能特性与多能互补关系,构建了具有分区差异化特征的多功能区设备规划策略。其次,建立了低碳改造后的热电联产机组和氢能多模式利用设备的数学模型,并对其低碳特性进行了分析。基于此,为应对规划周期内系统低碳改造成本的不确定性和短期内可再生能源出力的不确定性,提出了一种混合长-短期不确定性的多功能区IES协同规划模型。通过基于二进制扩展的凸包线性化方法,对所提规划模型中的非线性约束进行凸化,并采用相应的迭代收缩求解算法实现模型的有效求解。最后,通过某实际多功能区IES算例进行仿真,结果验证了所提模型和所用算法的有效性。