期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
迭代中心差分粒子滤波的SLAM算法 被引量:1
1
作者 钱臻 齐英杰 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2012年第3期355-360,共6页
为了提高SLAM算法中的位姿估计精度,通过在广泛使用的RBPF粒子滤波器中,利用迭代中心差分卡尔曼滤波器(ICDKF)来代替其中的扩展卡尔曼滤波器(EKF),并融合新的观测数据使提议分布更加接近后验概率分布,并且能够精确估计智能车辆的位姿,... 为了提高SLAM算法中的位姿估计精度,通过在广泛使用的RBPF粒子滤波器中,利用迭代中心差分卡尔曼滤波器(ICDKF)来代替其中的扩展卡尔曼滤波器(EKF),并融合新的观测数据使提议分布更加接近后验概率分布,并且能够精确估计智能车辆的位姿,进而采用ICDKF算法更新特征地图的位置.该算法在保证定位精度的同时减少了计算的复杂度,提高系统的估计性能,增加了迭代算法的稳定性.仿真实验结果验证了迭代中心差分粒子滤波SLAM算法的有效性. 展开更多
关键词 同时定位与地图创建 rbpf粒子滤波器 扩展卡尔曼滤波器 迭代中心差分卡尔曼滤波器
在线阅读 下载PDF
条件线性高斯状态空间模型的GSF-KF滤波算法
2
作者 尹建君 张建秋 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第18期4949-4951,4955,共4页
算法将模型中的条件线性状态方程代入观测方程,并融合线性状态的过程噪声和观测噪声,再与非线性状态方程联立,由高斯和滤波器(Gaussian sum filter,GSF)获得非线性状态的估计;然后将估计值代入线性状态方程与观测方程,由卡尔曼滤波器(Ka... 算法将模型中的条件线性状态方程代入观测方程,并融合线性状态的过程噪声和观测噪声,再与非线性状态方程联立,由高斯和滤波器(Gaussian sum filter,GSF)获得非线性状态的估计;然后将估计值代入线性状态方程与观测方程,由卡尔曼滤波器(Kalman Filter,KF)获得线性状态的估计。此外,获得的非线性状态估计的方差还用于修正线性状态的估计。将GSF-KF算法应用于目标跟踪的仿真结果表明,与现有Rao-Blackwellized粒子滤波器(Rao-Blackwellized Particle Filter,RBPF)相比,新方法在保证精度的同时,明显提高了实时性,计算时间仅约为RBPF的7%。 展开更多
关键词 信息处理技术 高斯和滤波-卡尔曼滤波(GSF-KF) Rao-Blackwellized粒子滤波器(rbpf) 条件线性高斯 目标跟踪
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部