期刊文献+
共找到1,953篇文章
< 1 2 98 >
每页显示 20 50 100
联合改进鸽群优化RBF神经网络PID的自动驾驶机器人车速控制
1
作者 周阿连 于子茵 刘刚 《机械设计与制造》 北大核心 2025年第6期69-74,共6页
为提高自动驾驶机器人车速控制的精度和系统稳定性,提出一种联合改进鸽群优化RBF神经网络PID的自动驾驶机器人车速控制方法。对基本鸽群优化算法(pigeon-inspired optimization,PIO)进行改进,通过增加局部搜索机制,以提升算法全局收敛... 为提高自动驾驶机器人车速控制的精度和系统稳定性,提出一种联合改进鸽群优化RBF神经网络PID的自动驾驶机器人车速控制方法。对基本鸽群优化算法(pigeon-inspired optimization,PIO)进行改进,通过增加局部搜索机制,以提升算法全局收敛精度。设计改进的RBF神经网络,采用改进核FCM聚类算法(improved KFCM,IKFCM)初始化RBF神经网络中心,利用改进的PIO(improved PIO,IPIO)优化RBF神经网络参数配置。最后,利用IPIO和IKFCM优化后的RBF神经网络对PID参数进行自适应调整。与其它车速控制方法相比,所提方法车速控制精度提高了约1.2%,能够精准实现对机器人车速的控制。 展开更多
关键词 机器人 鸽群优化算法 rbf神经网络 PID控制 精度
在线阅读 下载PDF
车辆主动悬架RBF神经网络的模型预测控制仿真研究
2
作者 顾苏怡 蒋昌华 《中国工程机械学报》 北大核心 2025年第3期410-414,共5页
为了提升车辆行驶的稳定性和乘坐的舒适性,提出一种基于径向基函数(RBF)神经网络的模型预测控制(MPC)系统,通过仿真验证主动悬架控制系统的有效性。创建7自由度车辆主动悬架简图,定义了车辆主动悬架动力学方程式。构建主动悬架MPC系统,... 为了提升车辆行驶的稳定性和乘坐的舒适性,提出一种基于径向基函数(RBF)神经网络的模型预测控制(MPC)系统,通过仿真验证主动悬架控制系统的有效性。创建7自由度车辆主动悬架简图,定义了车辆主动悬架动力学方程式。构建主动悬架MPC系统,利用RBF神经网络结构捕捉车辆主动悬架系统的复杂动态特性,通过对大量数据的学习和训练,能够快速建立主动悬架MPC参数,最终实现对车辆主动悬架系统的精确控制。利用Matlab软件对车辆主动悬架的车身加速度、悬架位移、轮胎位移进行仿真,评估车辆不同控制策略的行驶性能。结果显示:在路面信号激励下采用MPC,车辆主动悬架的车身加速度、悬架位移、轮胎位移变化幅度较大;采用RBF神经网络的MPC,车辆主动悬架的车身加速度、悬架位移、轮胎位移变化幅度较小。所提出的RBF神经网络MPC系统,能够增强车辆主动悬架抗干扰能力,从而保持车辆行驶的稳定性和舒适性。 展开更多
关键词 车辆 主动悬架 rbf神经网络 模型预测控制 仿真
在线阅读 下载PDF
基于改进RBF神经网络的永磁同步电机弱磁控制 被引量:3
3
作者 于丰铭 刘军 《组合机床与自动化加工技术》 北大核心 2025年第1期99-103,共5页
针对永磁同步电机在传统单电流调节器弱磁控制下,电机控制模式切换时导致的系统稳定性差,以及传统RBF-PID控制器输出权值的非精细化更新导致的参数过拟合,收敛速度慢等问题,提出一种过渡区域切换算法,引入混合权重因子,采用余弦插值与Si... 针对永磁同步电机在传统单电流调节器弱磁控制下,电机控制模式切换时导致的系统稳定性差,以及传统RBF-PID控制器输出权值的非精细化更新导致的参数过拟合,收敛速度慢等问题,提出一种过渡区域切换算法,引入混合权重因子,采用余弦插值与Sigmoid函数做过渡区域的平滑处理,并在弱磁区引入模糊PI控制器,将自适应梯度下降法与L2正则化策略结合,改进神经网络的输出权值。仿真结果表明,设计的过渡区域切换算法,不依赖电机参数,可移植性强,优化了恒转矩区切换至弱磁区的条件,在改进RBF-PID控制器下,转速超调量仅为0.07%,负载调节时间较之传统策略减少了94%。 展开更多
关键词 永磁同步电机 弱磁控制 过渡区域切换算法 rbf神经网络 模糊控制
在线阅读 下载PDF
基于RBF神经网络的4-PPPS并联机构位姿误差补偿
4
作者 金奕扬 李磊 +3 位作者 许家伟 汪建华 王国伟 许润康 《现代制造工程》 北大核心 2025年第4期140-150,共11页
为了解决船舶调姿机构结构误差引起的船舶总段对接精度下降问题,以4-PPPS并联机构为研究对象,首先采用闭环矢量法建立包含32个误差项的动平台位姿误差模型,然后具体分析其中便于测量的16种结构误差参数对动平台位姿精度的影响规律。误... 为了解决船舶调姿机构结构误差引起的船舶总段对接精度下降问题,以4-PPPS并联机构为研究对象,首先采用闭环矢量法建立包含32个误差项的动平台位姿误差模型,然后具体分析其中便于测量的16种结构误差参数对动平台位姿精度的影响规律。误差分析结果表明,沿轨道方向移动副长度误差对4-PPPS并联机构运动精度影响最大,在4条支链均存在误差的情况下,Z轴方向动平台位姿误差达到1.5 mm。同时,为克服传统误差参数辨识难度较大的问题,提出一种基于鲸鱼优化算法(Whale Optimization Algorithm,WOA)优化径向基函数(Radial Basis Function,RBF)神经网络的补偿方法。该方法将位姿误差转化为驱动关节长度误差,通过神经网络建立动平台理论位姿与驱动关节长度误差的预测模型,并采用鲸鱼优化算法优化网络参数,最终获得驱动关节长度补偿量,用来修正动平台的实际位姿并完成误差补偿。经过仿真验证,该方法能够有效提升4-PPPS并联机构的运动精度,动平台在X、Y、Z轴方向的误差均值分别由0.169、0.188、0.159 mm降至0.002、0.001、0.003 mm,误差最大值分别由0.208、0.231、0.195 mm降至0.012、0.001、0.019 mm,平均位姿精度提高了85.07%,补偿效果显著。 展开更多
关键词 并联机构 误差分析 误差补偿 rbf神经网络 鲸鱼优化算法
在线阅读 下载PDF
基于RBF神经网络的防空导弹武器系统作战效能评估 被引量:1
5
作者 张鹏 冯柯 +2 位作者 宫建成 杨小强 申金星 《系统仿真学报》 北大核心 2025年第2期529-540,共12页
针对防空导弹武器系统作战效能指标维度高、复杂性强以及评估方法主观等问题,提出基于RBF神经网络的作战效能评估方法。通过分析OODA环作战理论,构建了防空导弹武器系统作战效能指标体系。通过MATLAB实现RBF神经网络模型仿真,并应用BP、... 针对防空导弹武器系统作战效能指标维度高、复杂性强以及评估方法主观等问题,提出基于RBF神经网络的作战效能评估方法。通过分析OODA环作战理论,构建了防空导弹武器系统作战效能指标体系。通过MATLAB实现RBF神经网络模型仿真,并应用BP、PCA-BP、Elman神经网络等多种方法进行对比仿真验证。仿真结果表明:RBF神经网络模型预测评估结果与真实值更为接近,充分证明了该模型在防空导弹武器系统作战效能评估中的有效性,为指挥员作战决策提供有力支持。 展开更多
关键词 rbf神经网络 防空导弹武器系统 效能评估 作战仿真 OODA环
在线阅读 下载PDF
基于RBF神经网络的舰载火炮反演控制
6
作者 陈佳铭 侯远龙 +2 位作者 黄伟 崔庆新 张亮伟 《火力与指挥控制》 北大核心 2025年第8期205-210,共6页
针对舰载火炮在海面上受到海浪扰动影响其射击精准度问题,设计一种RBF神经网络反演控制的控制策略,对舰载火炮的随动系统位置环进行控制。是建立舰炮伺服系统的数学模型,获得的状态空间方程基于Lyapunov函数设计反演控制律,对其中的不... 针对舰载火炮在海面上受到海浪扰动影响其射击精准度问题,设计一种RBF神经网络反演控制的控制策略,对舰载火炮的随动系统位置环进行控制。是建立舰炮伺服系统的数学模型,获得的状态空间方程基于Lyapunov函数设计反演控制律,对其中的不确定项采用神经网络RBF进行逼近。有效地将RBF与反演控制相结合。利用matlab软件仿真,结果表明:该控制方法可以提高伺服系统的响应速度、抗干扰能力和跟踪精度,使其具备更高的稳定性。 展开更多
关键词 舰载火炮 交流伺服系统 反演控制 rbf神经网络
在线阅读 下载PDF
基于RBF神经网络自适应滑模控制技术的舰载机牵引车稳定性研究
7
作者 王阳 于鸿彬 《兵器装备工程学报》 北大核心 2025年第9期322-332,共11页
针对舰载机牵引车在舰船甲板上工作时受到海浪干扰而行驶失稳问题,设计了一种基于RBF神经网络的自适应滑模控制器。以舰载机牵引系统为研究对象,建立了舰载机牵引系统的动力学模型,利用RBF神经网络的学习能力和自适应特性对海浪环境下... 针对舰载机牵引车在舰船甲板上工作时受到海浪干扰而行驶失稳问题,设计了一种基于RBF神经网络的自适应滑模控制器。以舰载机牵引系统为研究对象,建立了舰载机牵引系统的动力学模型,利用RBF神经网络的学习能力和自适应特性对海浪环境下牵引车的未知干扰进行分析预测,对外界引起的不确定项和扰动量的上限进行自适应逼近,并通过构造Lyapunov函数导出自适应律,切换函数采用饱和函数代替符号函数,可以有效减弱趋近过程中产生的抖振。为验证该方法的稳定性,在Matlab/Simulink中搭建舰载机牵引系统运动控制仿真模型,将该控制器与普通滑模控制器进行对比分析。仿真结果表明:RBF神经网络自适应滑模控制器的整体控制效果明显优于普通滑模控制器的控制效果,使舰载机牵引车控制系统即使在海浪干扰环境下仍具有可靠的稳定性能,同时具有较强的抗干扰能力和良好的位置轨迹跟踪能力。 展开更多
关键词 舰载机牵引车 系统动力学模型 自适应滑模控制 rbf神经网络 稳定性
在线阅读 下载PDF
基于RBF神经网络的PM_(2.5)浓度预测
8
作者 万梓康 谢劭峰 +3 位作者 林买金 孟春阳 彭祥天 张茗斐 《环境监测管理与技术》 北大核心 2025年第4期67-72,共6页
针对传统RBF神经网络在PM_(2.5)回归预测中参数优化的问题,提出了粒子群算法优化的径向基神经网络(PSO-RBF)、鲸鱼算法优化的径向基神经网络(WOA-RBF)、北方苍鹰算法优化的径向基神经网络(NGO-RBF)和灰狼算法优化的径向基神经网络(GWO-R... 针对传统RBF神经网络在PM_(2.5)回归预测中参数优化的问题,提出了粒子群算法优化的径向基神经网络(PSO-RBF)、鲸鱼算法优化的径向基神经网络(WOA-RBF)、北方苍鹰算法优化的径向基神经网络(NGO-RBF)和灰狼算法优化的径向基神经网络(GWO-RBF)4种模型,以2021年12月1日—2022年8月31日拉萨、成都、北京和上海的大气污染物、气象因素、大气可降水量(PWV)及叶面积指数(LAI)的小时数据作为训练集,分别预测了4个城市在2022年9月、10月、11月共计91 d的PM_(2.5)质量浓度变化。结果表明:PSO-RBF模型的优化性能最为显著,相对于RBF模型,PSO-RBF模型的MAE、MAPE、RMSE、R^(2)均得到显著提升。 展开更多
关键词 PM_(2.5) rbf神经网络 粒子群算法 大气污染物 气象因素 回归预测
在线阅读 下载PDF
基于迁移学习和RBF神经网络的小子样产品性能参数预测方法
9
作者 毛廷鎏 赵建印 +2 位作者 杨根庆 孙伟赫 崔爽 《兵工自动化》 北大核心 2025年第5期57-60,共4页
针对小子样产品预测模型不够精确的问题,提出一种产品性能参数预测方法。在径向基函数(radial basis function,RBF)神经网络学习算法的基础上,加入迁移学习的思想,将小子样产品自身的历史测试数据和同型号同批次其他产品的测试数据当作... 针对小子样产品预测模型不够精确的问题,提出一种产品性能参数预测方法。在径向基函数(radial basis function,RBF)神经网络学习算法的基础上,加入迁移学习的思想,将小子样产品自身的历史测试数据和同型号同批次其他产品的测试数据当作源领域知识来充分学习,弥补当前领域因已标签样本数据少而导致的产品性能参数预测精度差的问题。结果表明,该方法的预测精度较高。 展开更多
关键词 迁移学习 rbf神经网络 小子样产品 参数预测
在线阅读 下载PDF
基于RBF神经网络的飞机油量计算方法
10
作者 罗云鹤 赵铮 《空军工程大学学报》 北大核心 2025年第2期26-33,共8页
针对目前飞机燃油测量采用的查表插值油量计算方法效率低,以及神经网络应用于飞机油箱油量计算存在的精度不高、容错性不好等问题,开展了基于径向基函数(RBF)神经网络的飞机油量计算方法研究。通过改善油箱体积特性数据库的离散分布优... 针对目前飞机燃油测量采用的查表插值油量计算方法效率低,以及神经网络应用于飞机油箱油量计算存在的精度不高、容错性不好等问题,开展了基于径向基函数(RBF)神经网络的飞机油量计算方法研究。通过改善油箱体积特性数据库的离散分布优化训练样本质量,改进神经网络训练算法提高对输入数据误差容错性,采用遗传算法优化神经网络设计参数,有效提升了RBF神经网络在油量计算中的泛化能力和训练效率。经某型飞机燃油箱计算实例和地面试验验证表明,油箱模型数据离散方法能更为准确描述油箱体积特性,与等距切割方法相比测试样本插值计算均方根误差下降34.8%。构建的RBF神经网络具有较好的计算精度,计算效率较插值计算方法提升了约5倍。改进算法与正交最小二乘法(OLS)算法相比,当输入参数存在误差时测试样本预估均方根误差下降61.5%,容错性明显提升,具有工程实用价值。 展开更多
关键词 飞机燃油测量 油量计算方法 rbf神经网络 油箱体积特性
在线阅读 下载PDF
基于RBF神经网络的上肢柔性外骨骼机器人自适应复合控制
11
作者 门曦凯 郭朝 《控制工程》 北大核心 2025年第4期586-594,共9页
为了提高上肢外骨骼机器人关节的柔性,结合模块化串联弹性驱动器和鲍登线,提出了一种上肢柔性外骨骼机器人。针对鲍登线产生的非线性摩擦、外界未知扰动和模型不确定性,提出了一种基于径向基函数(radial basis function,RBF)神经网络的... 为了提高上肢外骨骼机器人关节的柔性,结合模块化串联弹性驱动器和鲍登线,提出了一种上肢柔性外骨骼机器人。针对鲍登线产生的非线性摩擦、外界未知扰动和模型不确定性,提出了一种基于径向基函数(radial basis function,RBF)神经网络的自适应复合控制器。该控制器采用扰动观测器和RBF神经网络自适应控制器对扰动进行估计和补偿,并通过滑模控制器实现上肢柔性外骨骼机器人的跟踪控制。此外,通过李雅普诺夫理论证明了该控制器的稳定性。仿真结果表明,与传统的比例积分微分(proportional integral differential,PID)控制器和滑模控制器相比,所提控制器具有更好的扰动补偿能力、更高的跟踪控制精度和鲁棒性,实现了对上肢柔性外骨骼机器人的精准跟踪控制。 展开更多
关键词 上肢柔性外骨骼机器人 rbf神经网络 滑模控制 扰动观测器
在线阅读 下载PDF
基于RBF神经网络的光伏并网系统自适应等效建模方法 被引量:6
12
作者 张姝 陈豪 肖先勇 《电力系统保护与控制》 EI CSCD 北大核心 2024年第4期77-86,共10页
针对广义负荷建模中的光伏并网系统模型难以适应不同逆变器控制和频率扰动的动态响应问题,提出了一种基于径向基函数(radialbasisfunction,RBF)神经网络的光伏并网系统自适应等效建模方法。首先,建立了光伏并网逆变器不同控制策略响应... 针对广义负荷建模中的光伏并网系统模型难以适应不同逆变器控制和频率扰动的动态响应问题,提出了一种基于径向基函数(radialbasisfunction,RBF)神经网络的光伏并网系统自适应等效建模方法。首先,建立了光伏并网逆变器不同控制策略响应波形的检测判据。然后,构建了以电压-频率扰动为输入,有功功率和无功功率为输出的光伏并网系统RBF神经网络模型。最后,在Matlab/Simulink中搭建了光伏并网系统模型,并将其接入IEEE14节点配电网进行仿真验证。结果表明,构建的光伏并网自适应等效模型能够有效辨识电压频率给定控制、有功无功给定控制、下垂控制策略类型,能够准确反映光伏并网系统在不同电压、频率扰动下的有功功率、无功功率的动态响应特性。 展开更多
关键词 光伏并网系统 等效建模 逆变器控制 电压-频率扰动 rbf神经网络
在线阅读 下载PDF
基于自适应RBF神经网络具有模型不确定性的四旋翼无人机指定时间预设性能控制方法 被引量:5
13
作者 张园 郑鸿基 +3 位作者 刘海涛 韦丽娇 沈德战 赵振华 《农业机械学报》 EI CAS CSCD 北大核心 2024年第4期64-73,共10页
四旋翼无人机具有强耦合和欠驱动的特点,在飞行过程中很容易受到外界干扰,进而影响整个无人机系统的稳定性和精度。为此,提出了一种基于RBF神经网络的指定时间预设性能约束控制策略。首先,针对四旋翼无人机的不确定数学模型难以精确建立... 四旋翼无人机具有强耦合和欠驱动的特点,在飞行过程中很容易受到外界干扰,进而影响整个无人机系统的稳定性和精度。为此,提出了一种基于RBF神经网络的指定时间预设性能约束控制策略。首先,针对四旋翼无人机的不确定数学模型难以精确建立,并且在执行任务过程中存在外部未知扰动问题,提出了一种基于指定时间预设性能控制方法,将四旋翼无人机的轨迹跟踪问题转换为对位置子系统和姿态子系统的期望指令跟踪问题;其次,在设计控制器过程中,为了解决“微分爆炸”问题产生的滤波器误差,引入一种新型滤波误差补偿方法,通过RBF神经网络逼近外部未知扰动,并将预测结果补偿给控制器以提高轨迹跟踪的鲁棒性。最后,应用仿真模拟方法验证无人机控制系统稳定性和性能优势,通过飞行试验验证,微风聚拢环境下实际飞行轨迹与仿真模拟结果趋于一致,自主轨迹跟踪起降位置偏差小于1 cm,证明了所提出算法的有效性。 展开更多
关键词 四旋翼无人机 rbf神经网络 轨迹跟踪控制 预设性能约束 模型不确定性
在线阅读 下载PDF
基于混合算法下RBF神经网络的执行机构非线性特性在线辨识与补偿 被引量:3
14
作者 刘鑫屏 陈艺文 董子健 《动力工程学报》 CAS CSCD 北大核心 2024年第5期792-801,共10页
针对控制系统中执行机构非线性特性在线辨识及补偿问题,研究了一种基于变步长核最小均方(SVSKLMS)和遗传算法结合的混合径向基(VHRBF)神经网络。利用径向基(RBF)神经网络不依赖于精确的数学模型即可得到被控对象信息的特点,建立了控制... 针对控制系统中执行机构非线性特性在线辨识及补偿问题,研究了一种基于变步长核最小均方(SVSKLMS)和遗传算法结合的混合径向基(VHRBF)神经网络。利用径向基(RBF)神经网络不依赖于精确的数学模型即可得到被控对象信息的特点,建立了控制系统执行机构的非线性特性模型;为解决传统RBF神经网络辨识性能差的问题,使用遗传算法(GA)对神经网络的中心向量和方差进行优化,利用SVSKLMS算法对RBF神经网络模型中的权重进行优化,进而得到最佳的RBF神经网络。基于VHRBF神经网络及其逆模型补偿器对执行机构非线性特性进行在线辨识及补偿。仿真结果表明:与其他算法训练下的RBF神经网络相比,所提出的VHRBF神经网络能够精确辨识并补偿执行机构的非线性特性,并且具有更快的收敛速度、更优的收敛性能。 展开更多
关键词 rbf神经网络 在线辨识与补偿 执行机构 非线性特性
在线阅读 下载PDF
改进RBF神经网络在智能机器人轨迹规划中的研究 被引量:2
15
作者 刘翔 王开科 李菲 《机械设计与制造》 北大核心 2024年第4期90-94,共5页
针对工业生产中对智能机器人轨迹规划的要求越来越高,在工业机器人运动模型的基础上,提出了一种将RBF神经网络和遗传算法相结合的工业机器人轨迹规划方法。通过遗传算法对RBF神经网络的网络结构、连接权值和阈值进行优化,精确跟踪机器... 针对工业生产中对智能机器人轨迹规划的要求越来越高,在工业机器人运动模型的基础上,提出了一种将RBF神经网络和遗传算法相结合的工业机器人轨迹规划方法。通过遗传算法对RBF神经网络的网络结构、连接权值和阈值进行优化,精确跟踪机器人的轨迹。通过仿真将与未改进前的轨迹规划算法进行比较,验证该方法的优越性。结果表明,与改进前的规划算法相比,文中规划方法误差小,适应性强,能够满足工业机器人轨迹规划的预期要求。为工业机器人轨迹规划方法的发展提供了一定的参考。 展开更多
关键词 工业机器人 轨迹规划 rbf神经网络 遗传算法 关节轨迹
在线阅读 下载PDF
基于IPSO-RBF神经网络的西北内陆河流域突发水污染风险评估 被引量:1
16
作者 靳春玲 蔡惠春 +2 位作者 贡力 田亮 李战江 《环境科学与技术》 CAS CSCD 北大核心 2024年第9期120-127,共8页
突发水污染事故会破坏环境、危害健康,开展西北内陆河流域突发水污染风险评估对于维护西部脆弱生态安全尤为重要。该文针对西北内陆河流域突发水污染问题,利用PSR模型遴选18个因素建立突发水污染风险评价指标体系,基于径向基神经网络模... 突发水污染事故会破坏环境、危害健康,开展西北内陆河流域突发水污染风险评估对于维护西部脆弱生态安全尤为重要。该文针对西北内陆河流域突发水污染问题,利用PSR模型遴选18个因素建立突发水污染风险评价指标体系,基于径向基神经网络模型(RBF)构建突发水污染风险评价模型。为进一步保证模型精度,采用改进惯性权重因子和学习因子的粒子群算法(IPSO)对神经网络模型参数进行优化,建立IPSO-RBF神经网络西北内陆河突发水污染风险评价模型,并运用该模型对石羊河流域武威段2017-2022年突发水污染进行风险等级评价。结果显示,石羊河流域武威段突发水污染2017-2019年风险等级为Ⅱ级,2020-2022年风险等级为Ⅲ级,结果与熵权-TOPSIS法一致,与流域治理情况相符。该研究成果有利于提升石羊河流域突发水污染的防控水平与应急处置能力,对于西北内陆河流域水资源管理以及祁连山生态保护具有重要意义。 展开更多
关键词 突发水污染 风险评估 rbf神经网络 IPSO算法 内陆河流域
在线阅读 下载PDF
基于NSGA-Ⅱ与RBF神经网络的DPF结构参数优化 被引量:1
17
作者 贾德文 郭岩琦 +2 位作者 雷基林 毕玉华 聂学选 《中国工程机械学报》 北大核心 2024年第1期1-6,共6页
为降低某型号柴油机颗粒捕集器(DPF)在运行过程中的流动阻力,并使其保持较高的捕集效率。采用试验设计方法抽取代表性样本集,并分析影响因素对DPF捕集性能影响的显著性。利用径向基函数(RBF)神经网络构建所选变量与目标函数映射关系代... 为降低某型号柴油机颗粒捕集器(DPF)在运行过程中的流动阻力,并使其保持较高的捕集效率。采用试验设计方法抽取代表性样本集,并分析影响因素对DPF捕集性能影响的显著性。利用径向基函数(RBF)神经网络构建所选变量与目标函数映射关系代理模型,并结合第二代非劣排序遗传算法(NSGA-Ⅱ)与结合熵权的优劣解距离排序法(TOPSIS)得到关于目标函数的一组最优解。结果表明:该型号DPF平均压降降低了14.58%,且DPF平均捕集效率保持99%以上。 展开更多
关键词 柴油机颗粒捕集器 多目标优化 捕集性能 rbf神经网络 NSGA-Ⅱ遗传算法
在线阅读 下载PDF
基于MI-PSO-RBF神经网络的铁路客货运量预测研究 被引量:3
18
作者 薛锋 吴林鸿 +1 位作者 汪雯文 周琳 《铁道运输与经济》 北大核心 2024年第9期123-135,共13页
准确地预测铁路客货运量对合理配置运输资源、提高铁路客货运组织工作效率有重要作用。为提高铁路客货运量的预测精度,提出一种基于MI-PSO-RBF神经网络的客货运量组合预测模型。本研究对铁路客货运量的影响因素及其内在关联进行分析,选... 准确地预测铁路客货运量对合理配置运输资源、提高铁路客货运组织工作效率有重要作用。为提高铁路客货运量的预测精度,提出一种基于MI-PSO-RBF神经网络的客货运量组合预测模型。本研究对铁路客货运量的影响因素及其内在关联进行分析,选取相关指标,利用互信息素法对指标进行筛选,构建影响因素指标体系。基于该指标体系,运用粒子群算法优化的RBF神经网络模型分别对铁路客货运量进行预测,并与传统的BP神经网络、RBF神经网络预测模型进行比较。结果显示,经过参数调整优化后的MI-PSO-RBF神经网络在铁路客运量及货运量的预测精度方面表现最佳,测试集R2分别达到了0.9481与0.9911,具有较高的精度及泛化能力,表明该组合预测模型能够进一步提升神经网络模型预测铁路客货运量精确度。 展开更多
关键词 客货运量预测 互信息素 粒子群算法 rbf神经网络 影响因素法
在线阅读 下载PDF
基于RBF神经网络滑模控制的卷纸纠偏系统 被引量:1
19
作者 张继红 《中国造纸学报》 CAS CSCD 北大核心 2024年第1期107-113,共7页
设计了采用RBF神经网络控制的伺服纠偏控制系统,通过建立其动力学模型,运用MATLAB/Simulink仿真软件仿真,并进行实验验证,分析系统动态性能,得到响应曲线。结果表明,在拉纸速度65 mm/s下,跑偏量从1.5 mm降低到0.55 mm,该伺服系统位移和... 设计了采用RBF神经网络控制的伺服纠偏控制系统,通过建立其动力学模型,运用MATLAB/Simulink仿真软件仿真,并进行实验验证,分析系统动态性能,得到响应曲线。结果表明,在拉纸速度65 mm/s下,跑偏量从1.5 mm降低到0.55 mm,该伺服系统位移和速度跟踪误差均较小。 展开更多
关键词 卷纸 纠偏控制 rbf神经网络 滑模控制 MATLAB/SIMULINK 动态性能
在线阅读 下载PDF
一般大气环境下钢筋锈蚀深度的RBF神经网络预测模型研究 被引量:4
20
作者 王胜利 刘华 +2 位作者 郑山锁 董淑卿 黄瑜 《地震工程学报》 CSCD 北大核心 2024年第2期269-277,共9页
钢筋锈蚀深度预测是评估在役RC结构服役性能的基础。为建立一般大气环境RC构件中钢筋锈蚀深度预测模型,通过收集实测数据,分析影响钢筋锈蚀深度的主要参数及其影响规律,继而基于实测数据建立数值模型和RBF神经网络预测模型,并进行参数... 钢筋锈蚀深度预测是评估在役RC结构服役性能的基础。为建立一般大气环境RC构件中钢筋锈蚀深度预测模型,通过收集实测数据,分析影响钢筋锈蚀深度的主要参数及其影响规律,继而基于实测数据建立数值模型和RBF神经网络预测模型,并进行参数敏感性分析。研究结果表明:与数值模型相比,RBF神经网络对钢筋锈蚀深度预测效率与精度更高,能够有效映射各影响参数与钢筋锈蚀深度之间复杂的非线性关系。参数敏感性分析结果显示,钢筋混凝土表面锈胀裂缝宽度对钢筋锈蚀深度影响最大,钢筋直径、保护层厚度与钢筋直径之比和混凝土抗压强度等其他因素影响次之。所得模型可用于工程检测中钢筋锈蚀程度预测与RC构筑物剩余服役寿命评估。 展开更多
关键词 钢筋混凝土 钢筋锈蚀 rbf神经网络 锈蚀深度预测 敏感性分析
在线阅读 下载PDF
上一页 1 2 98 下一页 到第
使用帮助 返回顶部