期刊文献+
共找到184篇文章
< 1 2 10 >
每页显示 20 50 100
基于自组织聚类和JS散度的RBF神经网络 被引量:1
1
作者 董镇林 伍世虔 +1 位作者 叶健 银开州 《计算机工程与设计》 北大核心 2024年第4期1062-1068,共7页
针对如何确定径向基函数(RBF)神经网络隐层结构这一问题进行研究,提出一种基于自组织聚类和JS散度的RBF神经网络。为解决K-means算法对初始值敏感的问题,提出基于距离的自组织初始聚类,将戴维森堡丁(DBI)指数作为准则函数,进一步提高聚... 针对如何确定径向基函数(RBF)神经网络隐层结构这一问题进行研究,提出一种基于自组织聚类和JS散度的RBF神经网络。为解决K-means算法对初始值敏感的问题,提出基于距离的自组织初始聚类,将戴维森堡丁(DBI)指数作为准则函数,进一步提高聚类精度,得到代表数据集分布特性的隐节点;为解决隐节点冗余和相似的问题,提出一种基于敏感度分析的隐节点删除方法和基于詹森-香农(JS)散度的隐节点合并方法。仿真结果验证了该算法的有效性。 展开更多
关键词 rbf神经网络 隐层结构 自组织聚类 K-MEANS算法 戴维森堡丁指数 敏感度分析 詹森-香农散度
在线阅读 下载PDF
机器人采摘苹果果实的K-means和GA-RBF-LMS神经网络识别 被引量:43
2
作者 贾伟宽 赵德安 +3 位作者 刘晓洋 唐书萍 阮承治 姬伟 《农业工程学报》 EI CAS CSCD 北大核心 2015年第18期175-183,共9页
为进一步提升苹果果实的识别精度和速度,从而提高苹果采摘机器人的采摘效率。提出一种基于K-means聚类分割和基于遗传算法(genetic algorithm,GA)、最小均方差算法(least mean square,LMS)优化的径向基(radial basis function,RBF)神经... 为进一步提升苹果果实的识别精度和速度,从而提高苹果采摘机器人的采摘效率。提出一种基于K-means聚类分割和基于遗传算法(genetic algorithm,GA)、最小均方差算法(least mean square,LMS)优化的径向基(radial basis function,RBF)神经网络相结合的苹果识别方法。首先将采集到的苹果图像在Lab颜色空间下利用K-means聚类算法对其进行分割,分别提取分割图像的RGB、HSI颜色特征分量和圆方差、致密度、周长平方面积比、Hu不变矩形状特征分量。将提取的16个特征作为神经网络的输入,对RBF神经网络进行训练,以得到苹果果实的识别模型。针对RBF神经网络学习率低、过拟合等不足,引入遗传算法对RBF隐层神经元个数和连接权值进行优化,采取二者混合编码同时进化的优化方式,最后再利用LMS对连接权值进一步学习,建立新的神经网络优化模型(GA-RBF-LMS),以提高神经网络的运行效率和识别精度。为了获得更精确的网络模型,在训练过程中,苹果果实连同树枝、树叶一块训练;得到的模型在识别过程中,可一定程度上避免枝叶遮挡对果实识别的影响。为了更好地验证新方法,分别与传统的BP(back propagation)和RBF神经网络、GA-RBF优化模型比较,结果表明,该文算法对于遮挡、重叠果实的识别率达95.38%、96.17%,总体识别率达96.95%;从训练时间看,该文算法虽耗时较长,用150个样本进行训练平均耗时4.412 s,但训练成功率可达100%,且节省了人工尝试构造网络结构造成的时间浪费;从识别时间看,该文算法识别179个苹果的时间为1.75 s。可见GA-RBF-LMS网络模型在运行效率和识别精度较优。研究结果为苹果采摘机器人快速、精准识别果实提供参考。 展开更多
关键词 图像处理 算法 识别 苹果采摘机器人 K-means分割 特征提取 GA-rbf神经网络
在线阅读 下载PDF
用模糊RBF神经网络简化模型设计多变量自适应模糊控制器 被引量:14
3
作者 鲍鸿 黄心汉 +1 位作者 李锡雄 毛宗源 《控制理论与应用》 EI CAS CSCD 北大核心 2000年第2期169-174,共6页
针对多变量系统实时性要求 ,提出模糊径向基 (RBF)神经网络结构的简化模型及相应算法 ,并对由此简化模型设计的多变量模糊控制器模糊规则的在线自学习算法进行分析 ,提出一种系统动态增益的处理方法和基于过程最优的改进方案 .仿真实验... 针对多变量系统实时性要求 ,提出模糊径向基 (RBF)神经网络结构的简化模型及相应算法 ,并对由此简化模型设计的多变量模糊控制器模糊规则的在线自学习算法进行分析 ,提出一种系统动态增益的处理方法和基于过程最优的改进方案 .仿真实验结果表明该控制器可实现实时自适应控制 ,改进算法是有效的 . 展开更多
关键词 rbf神经网络 过程控制 模糊控制器 自适应控制
在线阅读 下载PDF
基于RBF神经网络的气体流量软测量模型研究 被引量:14
4
作者 仝卫国 杨耀权 金秀章 《中国电机工程学报》 EI CSCD 北大核心 2006年第1期66-69,共4页
流量信号是热工过程中非常重要的一个信号。由于流量信号存在着非线性、随机性和易受干扰的特点,很难建立起一个准确的测量模型,如传统的3种圆管紊流流速分布的近似模型,基于这些模型的传统测量方法很难测量出准确的流量值。该文提出的... 流量信号是热工过程中非常重要的一个信号。由于流量信号存在着非线性、随机性和易受干扰的特点,很难建立起一个准确的测量模型,如传统的3种圆管紊流流速分布的近似模型,基于这些模型的传统测量方法很难测量出准确的流量值。该文提出的基于径向基函数(RBF)神经网络的流量测量模型,采用了带有遗忘因子的梯度下降算法来确定隐层基函数中心的位置和输出层权值的大小。计算结果表明这种模型计算量小、精度高,且算法简单实用。实验结果说明,基于这种模型的流量测量精度较以往模型有很大提高。 展开更多
关键词 流量 热工过程 径向基函数(rbf) 神经网络 软测量
在线阅读 下载PDF
基于RBF神经网络的复杂场景人群目标的识别 被引量:5
5
作者 方卫宁 胡清梅 +1 位作者 李娜 郭北苑 《北京交通大学学报》 CAS CSCD 北大核心 2009年第4期29-33,共5页
大型公共建筑内人群数目及分布的在线监测是有效控制和疏散客流、保障人员安全的重要依据之一.利用公共建筑内现有的闭路电视监视系统,通过计算机视觉技术实现人群数目的自动识别是目前国外普遍采用的一种方式.文中提出了一种基于RBF神... 大型公共建筑内人群数目及分布的在线监测是有效控制和疏散客流、保障人员安全的重要依据之一.利用公共建筑内现有的闭路电视监视系统,通过计算机视觉技术实现人群数目的自动识别是目前国外普遍采用的一种方式.文中提出了一种基于RBF神经网络的复杂场景人群目标的识别算法,利用包含行人数目信息的前景图像的投影曲线等特征数据,通过训练好的RBF神经网络直接得到该前景图像中包含的人群数目.与其他算法相比,该算法具有较高的识别准确率,在一定误差范围内可以达到较好的效果. 展开更多
关键词 人群识别 图像处理 rbf神经网络
在线阅读 下载PDF
确定RBF神经网络隐层节点数的最大矩阵元法 被引量:19
6
作者 吴成茂 范九伦 《计算机工程与应用》 CSCD 北大核心 2004年第20期77-79,共3页
针对基于训练样本输入信息进行非监督聚类来确定RBF神经网络隐层节点数的方法存在利用信息不充分的缺陷,该文提出了一种新的确定RBF神经网络隐层节点数的方法。利用训练样本输入输出全部信息建立样本间的相似矩阵,然后采用最大矩阵元法... 针对基于训练样本输入信息进行非监督聚类来确定RBF神经网络隐层节点数的方法存在利用信息不充分的缺陷,该文提出了一种新的确定RBF神经网络隐层节点数的方法。利用训练样本输入输出全部信息建立样本间的相似矩阵,然后采用最大矩阵元法来确定RBF神经网络隐层节点数。实验仿真表明,该方法是有效的。 展开更多
关键词 rbf神经网络 隐层节点数 相似矩阵 最大矩阵元法
在线阅读 下载PDF
动态RBF神经网络在浮选过程模型失配中的应用 被引量:5
7
作者 王晓丽 黄蕾 +1 位作者 杨鹏 阳春华 《化工学报》 EI CAS CSCD 北大核心 2016年第3期897-902,共6页
铝土矿泡沫浮选过程中,因矿浆的快速沉淀等原因工艺参数在线检测困难,且入矿性质变化频繁,造成浮选过程参数随入矿的变化而不断改变。而通常建立的静态软测量模型利用固定样本集训练得到,当矿源变化时容易发生模型失配现象,使模型不能... 铝土矿泡沫浮选过程中,因矿浆的快速沉淀等原因工艺参数在线检测困难,且入矿性质变化频繁,造成浮选过程参数随入矿的变化而不断改变。而通常建立的静态软测量模型利用固定样本集训练得到,当矿源变化时容易发生模型失配现象,使模型不能跟踪当前对象。针对变矿源下的模型失配问题,本文提出基于隐层节点动态分配和模型参数动态修正策略的RBF神经网络建模方法,用于铝土矿浮选过程酸碱度的在线检测建模。实际生产数据仿真结果表明该方法能够有效解决模型失配的问题。 展开更多
关键词 泡沫浮选过程 动态rbf神经网络 模型失配 工况迁移
在线阅读 下载PDF
基于RBF神经网络逆系统的注射速度控制 被引量:6
8
作者 常玉清 张红燕 王姝 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第2期174-177,共4页
为了实现注射速度的精确控制,针对其非线性时变的动态特性,提出了基于神经网络逆系统的控制方法.采用M.Rafizadeh模型描述注射速度系统特性,通过求解该系统的相对阶证明了系统的可逆性.由于注射速度系统逆模型的解析形式难以获得,因此... 为了实现注射速度的精确控制,针对其非线性时变的动态特性,提出了基于神经网络逆系统的控制方法.采用M.Rafizadeh模型描述注射速度系统特性,通过求解该系统的相对阶证明了系统的可逆性.由于注射速度系统逆模型的解析形式难以获得,因此构造了基于RBF神经网络的注射速度逆系统,并将该系统与常规PID控制相结合,对注射速度实现复合控制,解决了基于RBF神经网络逆系统的开环控制效果不理想的问题.仿真实验表明,该控制系统具有良好的跟踪性能及抗干扰性能. 展开更多
关键词 注塑过程 注射速度 rbf神经网络逆系统 复合控制系统
在线阅读 下载PDF
基于隐层优化的RBF神经网络预测模型 被引量:3
9
作者 王纯子 张斌 《计算机工程》 CAS CSCD 北大核心 2010年第18期191-193,196,共4页
提出一种基于隐层优化算法的RBF神经网络预测模型——HLOA-IRBFM。在传统的免疫径向基神经网络模型(IRBFNM)的基础上引入粗糙集,将初始隐层空间进行划分。定义隐层区域密度和相对近似度等概念,提出边界区域中冗余点和孤立点的约减算法... 提出一种基于隐层优化算法的RBF神经网络预测模型——HLOA-IRBFM。在传统的免疫径向基神经网络模型(IRBFNM)的基础上引入粗糙集,将初始隐层空间进行划分。定义隐层区域密度和相对近似度等概念,提出边界区域中冗余点和孤立点的约减算法。优化后的隐层空间分布均匀,能以较少的中心数覆盖整个样本空间,弥补了IRBFNM模型过分依赖参数选取的不足。实验结果证明,HLOA-IRBFM模型比IRBFNM模型在预测性能方面具有更好的稳定性和准确性。 展开更多
关键词 粗糙集 rbf 神经网络 隐层优化 免疫算法
在线阅读 下载PDF
基于RBF神经网络和遗传算法的注塑成型质量控制与预测 被引量:21
10
作者 么大锁 贺莹 于洋洋 《塑料工业》 CAS CSCD 北大核心 2020年第4期71-76,共6页
针对注塑产品容易产生翘曲和缩痕的问题,以某检测仪外壳为研究对象,运用RBF神经网络模型和遗传算法,对注塑成型质量进行控制与预测。基于正交试验方案,运用Moldflow有限元分析软件获得试验结果;利用样本数据建立试验因素与响应值之间的... 针对注塑产品容易产生翘曲和缩痕的问题,以某检测仪外壳为研究对象,运用RBF神经网络模型和遗传算法,对注塑成型质量进行控制与预测。基于正交试验方案,运用Moldflow有限元分析软件获得试验结果;利用样本数据建立试验因素与响应值之间的RBF神经网络模型,并用最优拉丁超立方抽样技术,获得样本点对模型精度进行检验;运用带精英策略的非支配排序遗传算法(NSGA-Ⅱ)对注塑成型工艺参数进行多目标优化,达到有效控制和预测翘曲变形、体积收缩率和缩痕指数的目的,并经模拟和试模验证误差较小。结果表明,运用RBF神经网络模型和遗传算法对注塑成型质量进行控制与预测,生产出检测仪外壳最大翘曲变形量为0.394 mm,外观无缩痕。 展开更多
关键词 注塑成型 控制与预测 rbf神经网络 遗传算法 工艺参数 多目标优化
在线阅读 下载PDF
基于RBF网络的焊缝缺陷图像的识别与诊断技术研究 被引量:5
11
作者 乔荣华 董建刚 张永恒 《热加工工艺》 CSCD 北大核心 2016年第1期217-220,共4页
本文主要研究了采用中值滤波、LOG算子的边缘检测以及DSA减影等数字图像处理技术对现有的焊缝缺陷图像进行处理,获得带有各种焊缝缺陷特征的大量图像样本,并用RBF神经网络对样本进行训练,最终获得具有较高识别精度的RBF网络。利用该网... 本文主要研究了采用中值滤波、LOG算子的边缘检测以及DSA减影等数字图像处理技术对现有的焊缝缺陷图像进行处理,获得带有各种焊缝缺陷特征的大量图像样本,并用RBF神经网络对样本进行训练,最终获得具有较高识别精度的RBF网络。利用该网络可以大大提高对焊缝缺陷的判断效率,具有一定实用意义。 展开更多
关键词 图像处理技术 焊缝缺陷识别 rbf神经网络
在线阅读 下载PDF
基于CAE与RBF神经网络的固定体塑件注塑工艺优化 被引量:10
12
作者 邓其贵 黄力 韦彬贵 《塑料》 CAS CSCD 北大核心 2019年第1期82-87,共6页
针对保险杠固定体塑件注塑成型困难的问题,运用CAE仿真分析手段,首先对其采用3个点浇口进行浇注的方案模拟,得出了影响塑件注塑成型困难的主要问题:塑件中间部位设置的加强筋位置处,料流流动发生多次改变和多重叠加,导致注塑时熔体在此... 针对保险杠固定体塑件注塑成型困难的问题,运用CAE仿真分析手段,首先对其采用3个点浇口进行浇注的方案模拟,得出了影响塑件注塑成型困难的主要问题:塑件中间部位设置的加强筋位置处,料流流动发生多次改变和多重叠加,导致注塑时熔体在此区域产生紊流和回旋滞留。将浇注系统优化为采用5个点浇口浇注方案,能有效消除中间部位所产生的紊流和回旋滞留问题。结合CAE仿真手段和RBF神经网络的预测功能,对5点浇注方案进行注塑成型工艺参数的优化。获得塑件注塑较合理的工艺参数组合为:料温(Tθ)=229℃,模温(Ts)=51℃,注塑压力(pI)=43 MPa,注塑时间(ti)=6. 64 s,第一段保压压力(ph1)=62 MPa,第一段保压时间(th1)=9 s,第二段保压压力(ph2)=38 MPa,第二段保压时间(th2)=5. 5 s,第三段保压压力(ph3)=32 MPa,第三段保压时间(th3)=4. 5 s,冷却水进口温度(Tw)=27℃,冷却液流速(Vw)=3. 2 L/min,冷却时间(tc)=18 s。经实际注塑试验,塑件的注塑效果良好,有效地解决了实际生产问题。 展开更多
关键词 CAE仿真 注塑成型 浇注系统 优化 rbf神经网络 工艺参数
在线阅读 下载PDF
基于互相关函数相角特征的RBF神经网络来波方位估计 被引量:8
13
作者 张旻 李鹏飞 《电子与信息学报》 EI CSCD 北大核心 2009年第12期2926-2930,共5页
有效的方位特征获取对构建智能来波方位估计模型具有十分重要的意义。该文在分析阵列接收信号相关函数的基础上,首次提出利用相邻阵元信号互相关函数的相角作为来波方位特征。与常用的协方差矩阵上三角特征相比,剔除了与来波方位无关的... 有效的方位特征获取对构建智能来波方位估计模型具有十分重要的意义。该文在分析阵列接收信号相关函数的基础上,首次提出利用相邻阵元信号互相关函数的相角作为来波方位特征。与常用的协方差矩阵上三角特征相比,剔除了与来波方位无关的幅度信息和冗余的方位特征信息,在不损失有效方位信息的基础上使特征维数得到极大地降低。实验结果表明,利用相角特征构建的RBF神经网络的结构更简洁,泛化性能更好,来波方位估计精度高,实时性好,具有广阔的工程应用价值。 展开更多
关键词 信号处理 DOA估计 协方差矩阵 相角特征 径向基神经网络
在线阅读 下载PDF
基于PCA-RBF神经网络的浮选过程软测量建模 被引量:7
14
作者 张勇 王介生 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2006年第B07期116-119,共4页
以浮选过程为研究对象,提出基于主元分析与RBF神经网络相结合的经济技术指标软测量模型,该模型依据工艺机理和经验知识对过程变量进行初选,采用主元分析方法对高维输入向量进行降维化简和辅助变量选择;采用新型混合递推算法对RBF神经网... 以浮选过程为研究对象,提出基于主元分析与RBF神经网络相结合的经济技术指标软测量模型,该模型依据工艺机理和经验知识对过程变量进行初选,采用主元分析方法对高维输入向量进行降维化简和辅助变量选择;采用新型混合递推算法对RBF神经网络参数进行优化。该算法包括修正网络中心的自适应聚类的简化型次胜者受罚竞争学习算法和修正网络权值的带遗忘因子的递推最小二乘算法。混合学习算法提高了网络参数辨识的收敛速度。仿真结果表明,软测量模型能很好地实现浮选过程经济技术指标的全局预测。 展开更多
关键词 浮选过程 软测量 主元分析 rbf神经网络
在线阅读 下载PDF
基于神经网络和遗传算法的宽带激光熔覆层形貌尺寸预测
15
作者 倪崇智 路妍 +4 位作者 颉潭成 王军华 徐彦伟 史墨可 翟文豪 《热加工工艺》 北大核心 2025年第10期78-83,共6页
针对宽带激光熔覆层形貌尺寸所受影响因素较多且难以控制的问题,将激光功率、扫描速度和送粉速率作为输入,以熔覆层宽度和高度作为输出,构建了BP神经网络宽带激光熔覆层形貌尺寸预测模型,分析了其预测精度,并使用遗传算法对所建BP神经... 针对宽带激光熔覆层形貌尺寸所受影响因素较多且难以控制的问题,将激光功率、扫描速度和送粉速率作为输入,以熔覆层宽度和高度作为输出,构建了BP神经网络宽带激光熔覆层形貌尺寸预测模型,分析了其预测精度,并使用遗传算法对所建BP神经网络预测模型的权值和阈值进行了优化。结果表明,BP神经网络预测熔覆层形貌尺寸的相对误差均在7.434%以内,GA-BP神经网络模型预测熔覆层形貌尺寸的相对误差均在5.348%以内。GA-BP神经网络模型在预测宽带激光熔覆层形貌尺寸方面精度较高,能有效指导宽带激光熔覆工艺参数的选择。 展开更多
关键词 宽带激光熔覆层 工艺参数 BP神经网络 遗传算法
在线阅读 下载PDF
基于RBF神经网络的空域图像水印改进算法 被引量:2
16
作者 刘建民 赵健 谢端 《计算机工程与应用》 CSCD 北大核心 2005年第36期36-38,共3页
文章提出了一种利用径向基函数(RBF)神经网络实现的数字图像水印的改进新算法,从理论上对新算法进行了分析,通过仿真实验进行了验证。仿真结果表明,新算法与传统基于RBF神经网络图像水印算法相比,在保证速度不减慢的基础上其抗攻击能力... 文章提出了一种利用径向基函数(RBF)神经网络实现的数字图像水印的改进新算法,从理论上对新算法进行了分析,通过仿真实验进行了验证。仿真结果表明,新算法与传统基于RBF神经网络图像水印算法相比,在保证速度不减慢的基础上其抗攻击能力有了显著的改善。该算法的创新之处在于将多级神经网络的思想引入数字图像水印算法中,利用几个性能不同的网络实现一种系统的功能。 展开更多
关键词 rbf神经网络 数字水印 图像处理
在线阅读 下载PDF
基于激光振镜的三维曲线定位投影系统研究
17
作者 杨晗 张丽艳 《航空制造技术》 北大核心 2025年第10期88-97,共10页
激光三维曲线定位投影是航空复合材料铺层作业所需的重要技术。本文设计了一套基于激光振镜的三维曲线定位投影系统,该系统由激光器、二维振镜、光敏传感器、聚焦透镜组、分光镜等组成。在振镜高速扫描的过程中,光敏传感器检测从反光靶... 激光三维曲线定位投影是航空复合材料铺层作业所需的重要技术。本文设计了一套基于激光振镜的三维曲线定位投影系统,该系统由激光器、二维振镜、光敏传感器、聚焦透镜组、分光镜等组成。在振镜高速扫描的过程中,光敏传感器检测从反光靶标表面反射的光强信号,并且振镜实时反馈控制信号。三维曲线定位投影系统获取这两项信号数据,使用单隐藏层前馈神经网络(Single hidden layer feedforward neural network,SLFN)建立输入信号到输出激光直线的映射关系,通过求解网络模型中的参数完成标定。借助非透视n点算法(NPnP),三维曲线定位投影系统可实现对目标的定位并在其表面投射预先设计的图案,该系统对物体的定位无须借助其他测量设备,不依赖光学组件的精密装配。通过靶标定位投影和飞机复合材料壁板样件轮廓投影,验证了系统的有效性。 展开更多
关键词 激光 定位投影 振镜 单隐层前馈神经网络(SLFN) 非透视n点算法
在线阅读 下载PDF
利用Gaussian型RBF网络进行函数逼近的构造性估计 被引量:2
18
作者 熊仲宇 丁运亮 许志兴 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2001年第3期217-220,共4页
前馈人工神经网络有着极其广泛的应用 ,如何估计隐层神经元数及相应的逼近误差 ,一直是确定前馈网络结构的难点和关键。 RBF网络是一种最重要的前馈神经网络 ,本文给出了利用 Gaussian型 RBF网络逼近连续函数或 Lebesgue-可积函数时的... 前馈人工神经网络有着极其广泛的应用 ,如何估计隐层神经元数及相应的逼近误差 ,一直是确定前馈网络结构的难点和关键。 RBF网络是一种最重要的前馈神经网络 ,本文给出了利用 Gaussian型 RBF网络逼近连续函数或 Lebesgue-可积函数时的构造性的隐层单元数显式估算式及相应的显式逼近误差估算式。文中的结论也易于推广到离散样本的情形。这些结论对于提高 Guassian型 RBF在实际应用时的计算精度和减少计算量具有一定的指导意义。 展开更多
关键词 人工神经网络 RDF网络 函数逼近 构造性估计
在线阅读 下载PDF
基于RBF-GA的铝/镁异材FSLW工艺参数优化 被引量:3
19
作者 胡为 常新新 +3 位作者 姬书得 李峰 宋崎 牛士玉 《焊接学报》 EI CAS CSCD 北大核心 2020年第6期54-59,84,I0004,共8页
为获得高质量的7075-T6/AZ31B异种合金Zn中间层-超声辅助FSLW接头,通过RBF-遗传算法对转速、焊接速度、Zn中间层厚度及超声功率四种工艺参数进行了优化.结果表明,经过训练的RBF神经网络满足预测精度要求;将其与遗传算法相结合,在经多次... 为获得高质量的7075-T6/AZ31B异种合金Zn中间层-超声辅助FSLW接头,通过RBF-遗传算法对转速、焊接速度、Zn中间层厚度及超声功率四种工艺参数进行了优化.结果表明,经过训练的RBF神经网络满足预测精度要求;将其与遗传算法相结合,在经多次迭代后可获得最优工艺参数组合.取可执行最优解转速1037 r/min、焊接速度82 mm/min、Zn层厚度0.04 mm和超声功率1440 W进行试验验证,焊接接头拉剪载荷达到8860 N,与已报道最优接头相比提高11.4%.RBF神经网络与遗传算法相结合的人工智能优化方法可准确预测并优化接头质量,且具有较大的时间及经济优势. 展开更多
关键词 rbf神经网络 遗传算法 铝/镁异材 搅拌摩擦搭接焊 工艺参数优化
在线阅读 下载PDF
基于变结构过程RBF网络的发动机故障识别 被引量:1
20
作者 吴士力 唐振民 刘永 《计算机工程与设计》 北大核心 2016年第8期2218-2223,共6页
针对过程径向基(radial basis function,RBF)神经网络结构的优化问题,提出一种可以动态调整隐层结构的优化算法。根据隐层过程神经元的活跃度情况对其进行增删操作,有效解决了过程RBF神经网络结构的设计优化问题。利用梯度下降法对隐层... 针对过程径向基(radial basis function,RBF)神经网络结构的优化问题,提出一种可以动态调整隐层结构的优化算法。根据隐层过程神经元的活跃度情况对其进行增删操作,有效解决了过程RBF神经网络结构的设计优化问题。利用梯度下降法对隐层连接权值进行修正,提高网络的逼近精度,对网络的收敛性进行理论证明。对发动机进气控制系统若干故障的识别实验结果表明,该方法具有高效的结构调整能力,使得网络总体具有良好的逼近效率和泛化能力,有效提高了过程RBF神经网络对发动机进气系统故障的识别能力。 展开更多
关键词 过程rbf神经网络 结构优化 活跃度 发动机进气系统 故障识别
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部