期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Global approximation based adaptive RBF neural network control for supercavitating vehicles 被引量:12
1
作者 LI Yang LIU Mingyong +1 位作者 ZHANG Xiaojian PENG Xingguang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第4期797-804,共8页
A global approximation based adaptive radial basis function(RBF) neural network control strategy is proposed for the trajectory tracking control of supercavitating vehicles(SV).A nominal model is built firstly wit... A global approximation based adaptive radial basis function(RBF) neural network control strategy is proposed for the trajectory tracking control of supercavitating vehicles(SV).A nominal model is built firstly with the unknown disturbance.Next, the control scheme is established consisting of a computed torque controller(CTC) for the practical vehicle and an RBF neural network controller to estimate model error between the practical vehicle and the nominal model. The network weights are adapted by employing a Lyapunov-based design. Then it is shown by the Lyapunov theory that the trajectory tracking errors asymptotically converge to a small neighborhood of zero. The control performance of the proposed controller is illustrated by simulation. 展开更多
关键词 radial basis function rbf neural network computedtorque controller (CTC) adaptive control supercavitating vehicle(SV)
在线阅读 下载PDF
Target maneuver trajectory prediction based on RBF neural network optimized by hybrid algorithm 被引量:12
2
作者 XI Zhifei XU An +2 位作者 KOU Yingxin LI Zhanwu YANG Aiwu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期498-516,共19页
Target maneuver trajectory prediction plays an important role in air combat situation awareness and threat assessment.To solve the problem of low prediction accuracy of the traditional prediction method and model,a ta... Target maneuver trajectory prediction plays an important role in air combat situation awareness and threat assessment.To solve the problem of low prediction accuracy of the traditional prediction method and model,a target maneuver trajectory prediction model based on phase space reconstruction-radial basis function(PSR-RBF)neural network is established by combining the characteristics of trajectory with time continuity.In order to further improve the prediction performance of the model,the rival penalized competitive learning(RPCL)algorithm is introduced to determine the structure of RBF,the Levenberg-Marquardt(LM)and the hybrid algorithm of the improved particle swarm optimization(IPSO)algorithm and the k-means are introduced to optimize the parameter of RBF,and a PSR-RBF neural network is constructed.An independent method of 3D coordinates of the target maneuver trajectory is proposed,and the target manuver trajectory sample data is constructed by using the training data selected in the air combat maneuver instrument(ACMI),and the maneuver trajectory prediction model based on the PSR-RBF neural network is established.In order to verify the precision and real-time performance of the trajectory prediction model,the simulation experiment of target maneuver trajectory is performed.The results show that the prediction performance of the independent method is better,and the accuracy of the PSR-RBF prediction model proposed is better.The prediction confirms the effectiveness and applicability of the proposed method and model. 展开更多
关键词 trajectory prediction K-MEANS improved particle swarm optimization(IPSO) Levenberg-Marquardt(LM) radial basis function(rbf)neural network
在线阅读 下载PDF
ERBF network with immune clustering
3
作者 宫新保 臧小刚 周希朗 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2004年第3期315-318,共4页
Based on immune clustering and evolutionary programming(EP), a hybrid algorithm to train the RBF network is proposed. An immune fuzzy C-means clustering algorithm (IFCM) is used to adaptively specify the amount and in... Based on immune clustering and evolutionary programming(EP), a hybrid algorithm to train the RBF network is proposed. An immune fuzzy C-means clustering algorithm (IFCM) is used to adaptively specify the amount and initial positions of the RBF centers according to input data set; then the RBF network is trained with EP that tends to global optima. The application of the hybrid algorithm in multiuser detection problem demonstrates that the RBF network trained with the algorithm has simple network structure with good generalization ability. 展开更多
关键词 immune clustering algorithm evolutionary programming rbf network.
在线阅读 下载PDF
Intelligent prediction on air intake flow of spark ignition engine by a chaos radial basis function neural network 被引量:2
4
作者 LI Yue-lin LIU Bo-fu +3 位作者 WU Gang LIU Zhi-qiang DING Jing-feng ABUBAKAR Shitu 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第9期2687-2695,共9页
To ensure the control of the precision of air-fuel ratio(AFR)of port fuel injection(PFI)spark ignition(SI)engines,a chaos radial basis function(RBF)neural network is used to predict the air intake flow of the engine.T... To ensure the control of the precision of air-fuel ratio(AFR)of port fuel injection(PFI)spark ignition(SI)engines,a chaos radial basis function(RBF)neural network is used to predict the air intake flow of the engine.The data of air intake flow is proved to be multidimensionally nonlinear and chaotic.The RBF neural network is used to train the reconstructed phase space of the data.The chaos algorithm is employed to optimize the weights of output layer connection and the radial basis center of Gaussian function in hidden layer.The simulation results obtained from Matlab/Simulink illustrate that the model has higher accuracy compared to the conventional RBF model.The mean absolute error and the mean relative error of the chaos RBF model can reach 0.0017 and 0.48,respectively. 展开更多
关键词 intake air flow spark ignition engine CHAOS rbf neural network
在线阅读 下载PDF
Robust adaptive control of hypersonic vehicle considering inlet unstart 被引量:6
5
作者 WANG Fan FAN Pengfei +2 位作者 FAN Yonghua XU Bin YAN Jie 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第1期188-196,共9页
In this paper,a model reference adaptive control(MRAC)augmentation method of a linear controller is proposed for air-breathing hypersonic vehicle(AHV)during inlet unstart.With the development of hypersonic flight tech... In this paper,a model reference adaptive control(MRAC)augmentation method of a linear controller is proposed for air-breathing hypersonic vehicle(AHV)during inlet unstart.With the development of hypersonic flight technology,hypersonic vehicles have been gradually moving to the stage of weaponization.During the maneuvers,changes of attitude,Mach number and the back pressure can cause the inlet unstart phenomenon of scramjet.Inlet unstart causes significant changes in the aerodynamics of AHV,which may lead to deterioration of the tracking performance or instability of the control system.Therefore,we firstly establish the model of hypersonic vehicle considering inlet unstart,in which the changes of aerodynamics caused by inlet unstart is described as nonlinear uncertainty.Then,an MRAC augmentation method of a linear controller is proposed and the radial basis function(RBF)neural network is used to schedule the adaptive parameters of MRAC.Furthermore,the Lyapunov function is constructed to prove the stability of the proposed method.Finally,numerical simulations show that compared with the linear control method,the proposed method can stabilize the attitude of the hypersonic vehicle more quickly after the inlet unstart,which provides favorable conditions for inlet restart,thus verifying the effectiveness of the augmentation method proposed in the paper. 展开更多
关键词 air-breathing hypersonic vehicle(AHV) inlet unstart model reference adaptive control augmentation(MRAC) radial basis function(rbf)neural network
在线阅读 下载PDF
Crashworthiness optimization design of foam-filled tapered decagonal structures subjected to axial and oblique impacts 被引量:1
6
作者 PIRMOHAMMAD Sadjad AHMADI-SARAVANI Soheil ZAKAVI S.Javid 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第10期2729-2745,共17页
In this research,crashworthiness of polyurethane foam-filled tapered decagonal structures with different ratios of a/b=0,0.25,0.5,0.75 and 1 was evaluated under axial and oblique impacts.These new designed structures ... In this research,crashworthiness of polyurethane foam-filled tapered decagonal structures with different ratios of a/b=0,0.25,0.5,0.75 and 1 was evaluated under axial and oblique impacts.These new designed structures contained inner and outer tapered tubes,and four stiffening plates connected them together.The parameter a/b corresponds to the inner tube side length to the outer tube one.In addition,the space between the inner and outer tubes was filled with polyurethane foam.After validating the finite element model generated in LS-DYNA using the results of experimental tests,crashworthiness indicators of SEA(specific energy absorption)and Fmax(peak crushing force)were obtained for the studied structures.Based on the TOPSIS calculations,the semi-foam filled decagonal structure with the ratio of a/b=0.5 demonstrated the best crashworthiness capability among the studied ratios of a/b.Finally,optimum thicknesses(t1(thickness of the outer tube),t2(thickness of the inner tube),t3(thickness of the stiffening plates))of the selected decagonal structure were obtained by adopting RBF(radial basis function)neural network and genetic algorithm. 展开更多
关键词 CRASHWORTHINESS foam-filled tapered structure axial and oblique impact rbf neural network and genetic algorithm TOPSIS technique
在线阅读 下载PDF
Modeling and optimum operating conditions for FCCU using artificial neural network 被引量:6
7
作者 李全善 李大字 曹柳林 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1342-1349,共8页
A self-organizing radial basis function(RBF) neural network(SODM-RBFNN) was presented for predicting the production yields and operating optimization. Gradient descent algorithm was used to optimize the widths of RBF ... A self-organizing radial basis function(RBF) neural network(SODM-RBFNN) was presented for predicting the production yields and operating optimization. Gradient descent algorithm was used to optimize the widths of RBF neural network with the initial parameters obtained by k-means learning method. During the iteration procedure of the algorithm, the centers of the neural network were optimized by using the gradient method with these optimized width values. The computational efficiency was maintained by using the multi-threading technique. SODM-RBFNN consists of two RBF neural network models: one is a running model used to predict the product yields of fluid catalytic cracking unit(FCCU) and optimize its operating parameters; the other is a learning model applied to construct or correct a RBF neural network. The running model can be updated by the learning model according to an accuracy criterion. The simulation results of a five-lump kinetic model exhibit its accuracy and generalization capabilities, and practical application in FCCU illustrates its effectiveness. 展开更多
关键词 radial basis function(rbf neural network self-organizing gradient descent double-model fluid catalytic cracking unit(FCCU)
在线阅读 下载PDF
A Practical Radial Basic Function Network and Its Applications
8
作者 杨绍青 贾传荧 马乐梅 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第2期86-89,共4页
Artificial neural networks (ANNs) have become important tools in many fields, such as pattern recognition, signal processing and artificial intelligence. But many ANNs have their defects. For example, the results of R... Artificial neural networks (ANNs) have become important tools in many fields, such as pattern recognition, signal processing and artificial intelligence. But many ANNs have their defects. For example, the results of RBF networks greatly rely on the parameters of the basic functions and the squared errors often disperse if the parameters are not properly selected when the gradient descent algorithm is used. This paper describes a new algorithm for training an RBF network. In function approximation, this algorithm has two main advantages: high accuracy and stable learning process. In addition, it can be used as a good classifier in pattern recognition. 展开更多
关键词 rbf Network CHAOS Classification.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部