为了在普通微机上实现对医学体数据场的实时清晰绘制,给出了一种多种因素融合的光学属性赋值方法,进而提出一种新的医学体绘制算法。将医学体数据场进行分类,对于前景体素集采用LOD(Layer of Detail)技术进行重采样;然后用定义的光学属...为了在普通微机上实现对医学体数据场的实时清晰绘制,给出了一种多种因素融合的光学属性赋值方法,进而提出一种新的医学体绘制算法。将医学体数据场进行分类,对于前景体素集采用LOD(Layer of Detail)技术进行重采样;然后用定义的光学属性赋值方法对采样点赋值,从而将物体距离视点的距离与物体距离光源的距离有效地结合起来。最后,采用基于空间跳跃的加速技术显示背景体素。实验结果表明:对于512×512×482×2 Byte大小的体数据在减少至原来大小2/3的情况下,在普通微机上能够达到2.5 frame/s的清晰绘制。本算法能够实现一般大小体数据场的实时绘制,而且组织器官显示清晰,符合人的视觉特征。展开更多
The Dark Matter Particle Explorer(DAMPE) mission is one of the five scientific space science missions within the framework of the Strategic Pioneer Program on Space Science of the Chinese Academy of Science(CAS) appro...The Dark Matter Particle Explorer(DAMPE) mission is one of the five scientific space science missions within the framework of the Strategic Pioneer Program on Space Science of the Chinese Academy of Science(CAS) approved in 2011. The main scientific objective of DAMPE is to detect electrons and photons in the range of 5 GeV–10 TeV with unprecedented energy resolution(1.5% at 100 GeV) in order to identify possible Dark Matter(DM) signatures. It will also measure the flux of nuclei up to above 500 TeV with excellent energy resolution(40% at 800 GeV), which will bring new insights to the origin and propagation high energy cosmic rays. With its excellent photon detection capability, the DAMPE mission is well placed for new discoveries in high energy-ray astronomy as well.展开更多
Based on Fermat’s principle, two-point ray tracing method was studied in three-dimensional structure. By means of first order Taylor’s incomplete series expansion (i.e. no expansion to the length of the ray), a symm...Based on Fermat’s principle, two-point ray tracing method was studied in three-dimensional structure. By means of first order Taylor’s incomplete series expansion (i.e. no expansion to the length of the ray), a symmetry block tridiagonal matrix equation set was deduced. Further, the positive definiteness of coefficient matrix was discussed, and the positive definiteness was accurately proved in a mathematical way. It assured that the algorithm was well-posed. Associated with iterative method, the solution to ray tracing can be got through step-by-step linearized iteration of the nonlinear problem. An algorithm of the whole path iterative ray tracing method in three-dimensional velocity structure was obtained. This method shows a clear and simple as well as explicit computation formula, which makes ray tracing computation easily applicable in practice. The correction vector is obtained through finding the solution to the positive definite block tridiagonal equation set, which ensures the method is robust convergence. This study offers a new kind of feasible and efficient ray tracing method for three dimensional seismic migration and tomography. Meanwhile, it also provides the prerequisite guarantee to design a fast algorithm.展开更多
Numerical study was performed to evaluate the characteristics of combined heat transfer of radiation, conduction and convection in indirect near infrared ray (N/R) heating chamber. The effects of important design pa...Numerical study was performed to evaluate the characteristics of combined heat transfer of radiation, conduction and convection in indirect near infrared ray (N/R) heating chamber. The effects of important design parameters such as the shape of heat absorbing cylinder and heat releasing fin on the pressure drop and heat transfer coefficient were analyzed with different Reynolds numbers. The Reynolds numbers were varied from 103 to 3x106, which was defined based on the hydraulic diameter of the heat absorbing cylinder. Analyses were performed to obtain the inner and outer flow and the temperature distributions in the heat absorbing cylinder and the rates of radiation heat transfer and convection heat transfer. As the Reynolds number increases, the convection heat transfer rate is increased while the radiation heat transfer rate is decreased. The average convection heat transfer rate follows a power rule of the Reynolds number. Addition of three-dimensional heat releasing fin to the outside of the heat absorbing cylinder enhances the convection heat transfer.展开更多
Calli derived from tomato leaves were treated with different γ ray doses and cul-tured in medium with and without early blight fungitoxin.The experiment indicated that γ rayhad obvious influence on the growth of tom...Calli derived from tomato leaves were treated with different γ ray doses and cul-tured in medium with and without early blight fungitoxin.The experiment indicated that γ rayhad obvious influence on the growth of tomato calli,with a stronger inhibition at 3000 rad dose.The fungitoxin could be used as selection pressure in the screening of disease resistant mutant.展开更多
According to models such as panspermia or the Nebula-Relay hypothesis,the ancestors of life on Earth once lived in molecular clouds.Then what are the energy source and bioenergetics for such lifeforms?A new bioenerget...According to models such as panspermia or the Nebula-Relay hypothesis,the ancestors of life on Earth once lived in molecular clouds.Then what are the energy source and bioenergetics for such lifeforms?A new bioenergetic mechanism powered by cosmic ray ionization of hydrogen molecules is proposed and its relation with the origin of chemiosmosis is also discussed in this paper.Based on this mechanism,the Last Universal Common Ancestor may be a type of lifeform that utilizes hydrogen molecules as donors of electron transport chains.展开更多
A fast algorithm for ray tracing is presented, with which the specular reflection term of global illumination model is improved. A hybrid technique combining hierarchical bounding volumes and constant size box partiti...A fast algorithm for ray tracing is presented, with which the specular reflection term of global illumination model is improved. A hybrid technique combining hierarchical bounding volumes and constant size box partitioning is presented and a fast box traversal algorithm is used. By this technique multiple ray intersections with objects that are in more than one box can be avoided. As a result, the speed of ray tracing is considerably increased.展开更多
Identifying potential hazards is crucial for maintaining the structural stability of opencast mining area.To address the limitations of irregular structure and sparse microseismic events in opencast mining monitoring,...Identifying potential hazards is crucial for maintaining the structural stability of opencast mining area.To address the limitations of irregular structure and sparse microseismic events in opencast mining monitoring,this paper proposes an active-source imaging method for identifying potential hazards precisely based on velocity structure.This method innovatively divides the irregular structure into unstructured grids and introduces a damping and smoothing regularization operator into the inversion process,mitigating the ill-posedness caused by the sparse distribution of events and rays.Numerical and laboratory experiments were conducted to verify the reliability and effectiveness of the proposed method.The results demonstrate the competitive performance of the method in identifying hazard areas of varying sizes and numbers.The proposed method shows potential for meeting hazard identification requirements in the complex opencast mining structure.Furthermore,field experiments were conducted on an rare earth mine slope.It confirms that the proposed method provides a more concrete and intuitive scheme for stability monitoring for the microseismic monitoring system.This paper not only demonstrates the application of acoustic structure velocity imaging technology in detecting unstructured potential hazard regions but also provides valuable insights into the construction and maintenance of stable opencast mining area.展开更多
文摘为了在普通微机上实现对医学体数据场的实时清晰绘制,给出了一种多种因素融合的光学属性赋值方法,进而提出一种新的医学体绘制算法。将医学体数据场进行分类,对于前景体素集采用LOD(Layer of Detail)技术进行重采样;然后用定义的光学属性赋值方法对采样点赋值,从而将物体距离视点的距离与物体距离光源的距离有效地结合起来。最后,采用基于空间跳跃的加速技术显示背景体素。实验结果表明:对于512×512×482×2 Byte大小的体数据在减少至原来大小2/3的情况下,在普通微机上能够达到2.5 frame/s的清晰绘制。本算法能够实现一般大小体数据场的实时绘制,而且组织器官显示清晰,符合人的视觉特征。
文摘The Dark Matter Particle Explorer(DAMPE) mission is one of the five scientific space science missions within the framework of the Strategic Pioneer Program on Space Science of the Chinese Academy of Science(CAS) approved in 2011. The main scientific objective of DAMPE is to detect electrons and photons in the range of 5 GeV–10 TeV with unprecedented energy resolution(1.5% at 100 GeV) in order to identify possible Dark Matter(DM) signatures. It will also measure the flux of nuclei up to above 500 TeV with excellent energy resolution(40% at 800 GeV), which will bring new insights to the origin and propagation high energy cosmic rays. With its excellent photon detection capability, the DAMPE mission is well placed for new discoveries in high energy-ray astronomy as well.
基金Project(40674071) supported by the National Natural Science Foundation of Chinaproject(KFAS2002-2003) supported by Korea Foundation for Advanced Studies
文摘Based on Fermat’s principle, two-point ray tracing method was studied in three-dimensional structure. By means of first order Taylor’s incomplete series expansion (i.e. no expansion to the length of the ray), a symmetry block tridiagonal matrix equation set was deduced. Further, the positive definiteness of coefficient matrix was discussed, and the positive definiteness was accurately proved in a mathematical way. It assured that the algorithm was well-posed. Associated with iterative method, the solution to ray tracing can be got through step-by-step linearized iteration of the nonlinear problem. An algorithm of the whole path iterative ray tracing method in three-dimensional velocity structure was obtained. This method shows a clear and simple as well as explicit computation formula, which makes ray tracing computation easily applicable in practice. The correction vector is obtained through finding the solution to the positive definite block tridiagonal equation set, which ensures the method is robust convergence. This study offers a new kind of feasible and efficient ray tracing method for three dimensional seismic migration and tomography. Meanwhile, it also provides the prerequisite guarantee to design a fast algorithm.
基金supported by the Second Stage of Brain Korea 21 Projects
文摘Numerical study was performed to evaluate the characteristics of combined heat transfer of radiation, conduction and convection in indirect near infrared ray (N/R) heating chamber. The effects of important design parameters such as the shape of heat absorbing cylinder and heat releasing fin on the pressure drop and heat transfer coefficient were analyzed with different Reynolds numbers. The Reynolds numbers were varied from 103 to 3x106, which was defined based on the hydraulic diameter of the heat absorbing cylinder. Analyses were performed to obtain the inner and outer flow and the temperature distributions in the heat absorbing cylinder and the rates of radiation heat transfer and convection heat transfer. As the Reynolds number increases, the convection heat transfer rate is increased while the radiation heat transfer rate is decreased. The average convection heat transfer rate follows a power rule of the Reynolds number. Addition of three-dimensional heat releasing fin to the outside of the heat absorbing cylinder enhances the convection heat transfer.
文摘Calli derived from tomato leaves were treated with different γ ray doses and cul-tured in medium with and without early blight fungitoxin.The experiment indicated that γ rayhad obvious influence on the growth of tomato calli,with a stronger inhibition at 3000 rad dose.The fungitoxin could be used as selection pressure in the screening of disease resistant mutant.
基金Supported by the National Key Research and Development Program of China(Grant No.2016YFA0400200)the National Natural Science Foundation of China(Grants No.11773075)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2016288).
文摘According to models such as panspermia or the Nebula-Relay hypothesis,the ancestors of life on Earth once lived in molecular clouds.Then what are the energy source and bioenergetics for such lifeforms?A new bioenergetic mechanism powered by cosmic ray ionization of hydrogen molecules is proposed and its relation with the origin of chemiosmosis is also discussed in this paper.Based on this mechanism,the Last Universal Common Ancestor may be a type of lifeform that utilizes hydrogen molecules as donors of electron transport chains.
文摘A fast algorithm for ray tracing is presented, with which the specular reflection term of global illumination model is improved. A hybrid technique combining hierarchical bounding volumes and constant size box partitioning is presented and a fast box traversal algorithm is used. By this technique multiple ray intersections with objects that are in more than one box can be avoided. As a result, the speed of ray tracing is considerably increased.
基金Project(2021YFC2900500)supported by the National Key Research and Development Program of China。
文摘Identifying potential hazards is crucial for maintaining the structural stability of opencast mining area.To address the limitations of irregular structure and sparse microseismic events in opencast mining monitoring,this paper proposes an active-source imaging method for identifying potential hazards precisely based on velocity structure.This method innovatively divides the irregular structure into unstructured grids and introduces a damping and smoothing regularization operator into the inversion process,mitigating the ill-posedness caused by the sparse distribution of events and rays.Numerical and laboratory experiments were conducted to verify the reliability and effectiveness of the proposed method.The results demonstrate the competitive performance of the method in identifying hazard areas of varying sizes and numbers.The proposed method shows potential for meeting hazard identification requirements in the complex opencast mining structure.Furthermore,field experiments were conducted on an rare earth mine slope.It confirms that the proposed method provides a more concrete and intuitive scheme for stability monitoring for the microseismic monitoring system.This paper not only demonstrates the application of acoustic structure velocity imaging technology in detecting unstructured potential hazard regions but also provides valuable insights into the construction and maintenance of stable opencast mining area.