The Fringe Projection Profilometry(FPP)system with a single exposure time or a single projection intensity is limited by the dynamic range of the camera,which can lead to overexposure and underexposure of the image,re...The Fringe Projection Profilometry(FPP)system with a single exposure time or a single projection intensity is limited by the dynamic range of the camera,which can lead to overexposure and underexposure of the image,resulting in point cloud loss or reduced accuracy.To address this issue,unlike the pixel modulation method of projectors,we utilize the characteristics of color projectors where the intensity of the three-channel LED can be controlled independently.We propose a method for separating the projector's three-channel light intensity,combined with a color camera,to achieve single exposure and multi-intensity image acquisition.Further,the crosstalk coefficient is applied to predict the three-channel reflectance of the measured object.By integrating clustering and channel mapping,we establish a pixel-level mapping model between the projector's three-channel current and the camera's three-channel image intensity,which realizes the optimal projection current prediction and the high dynamic range(HDR)image acquisition.The proposed method allows for high-precision three-dimensional(3D)data acquisition of HDR scenes with a single exposure.The effectiveness of this method has been validated through experiments with standard planes and standard steps,showing a significant reduction in mean absolute error(44.6%)compared to existing singleexposure HDR methods.Additionally,the number of images required for acquisition is significantly reduced(by 70.8%)compared to multi-exposure fusion methods.This proposed method has great potential in various FPP-related fields.展开更多
Large dynamic range and ultra-wideband receiving abilities are significant for many receivers. With these abilities, receivers can obtain signals with different power in ultra-wideband frequency space without informat...Large dynamic range and ultra-wideband receiving abilities are significant for many receivers. With these abilities, receivers can obtain signals with different power in ultra-wideband frequency space without information loss. However, conventional receiving scheme is hard to have large dynamic range and ultra-wideband receiving simultaneously because of the analog-to-digital converter(ADC) dynamic range and sample rate limitations. In this paper, based on the modulated sampling and unlimited sampling, a novel receiving scheme is proposed to achieve large dynamic range and ultra-wideband receiving. Focusing on the single carrier signals, the proposed scheme only uses a single self-rest ADC(SR-ADC) with low sample rate, and it achieves large dynamic range and ultra-wideband receiving simultaneously. Two receiving scenarios are considered, and they are cooperative strong signal receiving and non-cooperative strong/weak signals receiving. In the cooperative receiving scenario, an improved fast recovery method is proposed to obtain the modulated sampling output. In the non-cooperative receiving scenario, the strong and weak signals with different carrier frequencies are considered, and the signal processing method can recover and estimate each signal. Simulation results show that the proposed scheme can realize large dynamic range and ultra-wideband receiving simultaneously when the input signal-to-noise(SNR) ratio is high.展开更多
This paper proposes a reliability evaluation model for a multi-dimensional network system,which has potential to be applied to the internet of things or other practical networks.A multi-dimensional network system with...This paper proposes a reliability evaluation model for a multi-dimensional network system,which has potential to be applied to the internet of things or other practical networks.A multi-dimensional network system with one source element and multiple sink elements is considered first.Each element can con-nect with other elements within a stochastic connection ranges.The system is regarded as successful as long as the source ele-ment remains connected with all sink elements.An importance measure is proposed to evaluate the performance of non-source elements.Furthermore,to calculate the system reliability and the element importance measure,a multi-valued decision diagram based approach is structured and its complexity is analyzed.Finally,a numerical example about the signal transfer station system is illustrated to analyze the system reliability and the ele-ment importance measure.展开更多
We establish the Hausdorff dimension of the graph of general Markov processes on Rd based on some probability estimates of the processes staying or leaving small balls in small time.In particular,our results indicate ...We establish the Hausdorff dimension of the graph of general Markov processes on Rd based on some probability estimates of the processes staying or leaving small balls in small time.In particular,our results indicate that,for symmetric diffusion processes(withα=2)or symmetricα-stable-like processes(withα∈(0,2))on Rd,it holds almost surely that dimH GrX([0,1])=1{α<1}+(2−1/α)1{α≥1,d=1}+(d∧α)1{α≥1,d≥2}.We also systematically prove the corresponding results about the Hausdorff dimension of the range of the processes.展开更多
The detection of hypersonic targets usually confronts range migration(RM)issue before coherent integration(CI).The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condit...The detection of hypersonic targets usually confronts range migration(RM)issue before coherent integration(CI).The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condition.However,with the increasing requirement of far-range detection,the time bandwidth product,which is corresponding to radar’s mean power,should be promoted in actual application.Thus,the echo signal generates the scale effect(SE)at large time bandwidth product situation,influencing the intra and inter pulse integration performance.To eliminate SE and correct RM,this paper proposes an effective algorithm,i.e.,scaled location rotation transform(ScLRT).The ScLRT can remove SE to obtain the matching pulse compression(PC)as well as correct RM to complete CI via the location rotation transform,being implemented by seeking the actual rotation angle.Compared to the traditional coherent detection algorithms,Sc LRT can address the SE problem to achieve better detection/estimation capabilities.At last,this paper gives several simulations to assess the viability of ScLRT.展开更多
The airborne conformal array(CFA)radar's clutter ridges are range-modulated,which result in a bias in the estimation of the clutter covariance matrix(CCM)of the cell under test(CUT),further,reducing the clutter su...The airborne conformal array(CFA)radar's clutter ridges are range-modulated,which result in a bias in the estimation of the clutter covariance matrix(CCM)of the cell under test(CUT),further,reducing the clutter suppression performance of the airborne CFA radar.The clutter ridges can be effectively compensated by the space-time separation interpolation(STSINT)method,which costs less computation than the space-time interpolation(STINT)method,but the performance of interpolation algorithms is seriously affected by the short-range clutter,especially near the platform height.Location distributions of CFA are free,which yields serious impact that range spaces of steering vector matrices are non-orthogonal complement and even no longer disjoint.Further,a new method is proposed that the shortrange clutter is pre-processed by oblique projection with the intersected range spaces(OPIRS),and then clutter data after being pre-processed are compensated to the desired range bin through the STSINT method.The OPIRS also has good compatibility and can be used in combination with many existing methods.At the same time,oblique projectors of OPIRS can be obtained in advance,so the proposed method has almost the same computational load as the traditional compensation method.In addition,the proposed method can perform well when the channel error exists.Computer simulation results verify the effectiveness of the proposed method.展开更多
For radar high resolution range profile (HRRP) recognition, three aspects are of great importance to improve the performance, i.e. discrimination for outlier, classification for inner and an accurate description for f...For radar high resolution range profile (HRRP) recognition, three aspects are of great importance to improve the performance, i.e. discrimination for outlier, classification for inner and an accurate description for feature space. To tackle these issues, a novel target recognition method is designed, denoted by the multiple support vectors (multi-SV) method. With the proposed method, a special framework is constructed by a treble correlate support vector model to segment the feature space to two regions with the distribution of density, and then the description and classification hyperplane for each region are achieved. Based on the support vector framework, this method needs less memory and computation complexity to fit practical radar HRRP recognition. Finally, the experiment based on the measured data verifies the excellent performance of this method.展开更多
Prior to the collision and accretion of the Kohistan arc terrane during the late Cretaceous and the Indian plate after the early Eocene, the southern margin of Asia along the Hindu Kush, Karakoram and Lhasa block terr...Prior to the collision and accretion of the Kohistan arc terrane during the late Cretaceous and the Indian plate after the early Eocene, the southern margin of Asia along the Hindu Kush, Karakoram and Lhasa block terranes was an active Andean\|type continental margin. In south Tibet this margin was dominated by the calc\|alkaline Ladakh—Gangdese granite batholith, associated andesitic volcanic rocks and continental red\|beds. In contrast, the southern Karakoram exposes deep crustal metamorphic rocks and crustal melt leucogranites. New U\|Pb age dating from the Hunza valley and Baltoro glacier region has revealed four spatially and temporally distinct metamorphic episodes. M1 sillimanite grade metamorphism in Hunza was a late Cretaceous event, probably caused by the accretion of the Kohistan arc to Asia. M2 was the major kyanite and sillimanite grade event during late Eocene—Oligocene crustal thickening and shortening, following India\|Asia collision. Numerous melting events resulted in the formation of crustal melt granites throughout the last 50Ma with multiple generations of dykes and very large scale crustal melting along the Baltoro monzogranite\|leucogranite ba tholith during the late Oligocene—early Miocene. M3 metamorphism was a high\| T , low\| p contact thermal metamorphism around the Baltoro granite. In Hunza, younger staurolite grade metamorphism has been dated by U\|Pb monazites at 16Ma, with the Sumayar leucogranite intruded at 9 5Ma cross\|cutting the metamorphic isograds. In the Baltoro region the youngest metamorphism, M4, is the sillimanite grade Dassu gneiss core complex dated by U\|Pb on monazites as late Miocene—Pliocene (5 4±0 25)Ma with Precambrian protolith zircon cores (1855±11)Ma. Numerous gem\|bearing pegmatite dykes cross\|cut these rocks and are thought to have been intruded within the last 2~3Ma. Structural mapping, combined with U\|Pb geochronology shows that major metamorphic events can be both long\|lasting (up to 20Ma) and very restrictive, both in time and space.展开更多
A novel performance model of losses of pump was presented,which allows an explicit insight into the losses of various friction pairs of pump.The aim is to clarify that to what extent the hydro-mechanical losses affect...A novel performance model of losses of pump was presented,which allows an explicit insight into the losses of various friction pairs of pump.The aim is to clarify that to what extent the hydro-mechanical losses affect efficiency,and to further gain an insight into the variation and distribution characteristics of hydro-mechanical losses over wide operating ranges.A good agreement is found in the comparisons between simulation and experimental results.At rated speed,the hydro-mechanical losses take a proportion ranging from 87% to 89% and from 68% to 97%,respectively,of the total power losses of pump working under 5 MPa pressure conditions,and 13% of full displacement conditions.Furthermore,within the variation of speed ranging from 48% to 100% of rated speed,and pressure ranging from 14% to 100% of rated pressure,the main sources of hydro-mechanical losses change to slipper swash plate pair and valve plate cylinder pair at low displacement conditions,from the piston cylinder pair and slipper swash plate pair at full displacement conditions.Besides,the hydro-mechanical losses in ball guide retainer pair are found to be almost independent of pressure.The derived conclusions clarify the main orientations of efforts to improve the efficiency performance of pump,and the proposed model can service for the design of pump with higher efficiency performance.展开更多
Orthogonal frequency division multiplexing(OFDM) radar with multicarrier phase-coded waveforms has been recently introduced to achieve high range resolution.The conventional method for obtaining the high resolution ...Orthogonal frequency division multiplexing(OFDM) radar with multicarrier phase-coded waveforms has been recently introduced to achieve high range resolution.The conventional method for obtaining the high resolution range profile(HRRP) is based on matched filters.A method of synthesizing HRRP based on the fast Fourier transform(FFT) and decoding is proposed.The mathematical expressions of HRRP are derived by assuming an elementary scenario of point-scattering targets.Based on the characteristic of OFDM multicarrier signals,it mainly analyzes the influence on HRRP exerted by several factors,such as velocity compensation errors,the sampling frequency offset,and so on.The conclusions are significant for the design of the OFDM imaging radar.Finally,the simulation results demonstrate the validity of the conclusions.展开更多
Taking the real part and the imaginary part of complex sound pressure of the sound field as features,a transfer learning model is constructed.Based on the pre-training of a large amount of underwater acoustic data in ...Taking the real part and the imaginary part of complex sound pressure of the sound field as features,a transfer learning model is constructed.Based on the pre-training of a large amount of underwater acoustic data in the preselected sea area using the convolutional neural network(CNN),the few-shot underwater acoustic data in the test sea area are retrained to study the underwater sound source ranging problem.The S5 voyage data of SWellEX-96 experiment is used to verify the proposed method,realize the range estimation for the shallow source in the experiment,and compare the range estimation performance of the underwater target sound source of four methods:matched field processing(MFP),generalized regression neural network(GRNN),traditional CNN,and transfer learning.Experimental data processing results show that the transfer learning model based on residual CNN can effectively realize range estimation in few-shot scenes,and the estimation performance is remarkably better than that of other methods.展开更多
加拿大阿巴拉契亚造山带纽芬兰岛Humber带基底地块属性及地壳生长演化是近年来关注的科学问题,尤其是岛内西南部的Indian Head Range地块,其年龄组成与同位素特征研究对区域基底构造属性划分与对比至关重要。本文对Indian Head Range地...加拿大阿巴拉契亚造山带纽芬兰岛Humber带基底地块属性及地壳生长演化是近年来关注的科学问题,尤其是岛内西南部的Indian Head Range地块,其年龄组成与同位素特征研究对区域基底构造属性划分与对比至关重要。本文对Indian Head Range地块内的二长花岗岩岩体进行了锆石U⁃Pb定年,得到其^(206)Pb/^(238)U加权平均年龄值为1149±4 Ma,代表该岩体的侵位年龄。这一定年结果表明该岩体具有中元古代晚期的年龄,为该地块格林威尔期岩浆事件的存在提供了新的年龄证据。Nd⁃Hf同位素分析结果显示,该二长花岗岩岩体εNd值为-2.3,εHf值介于+1.93~+3.65之间,两阶段Hf模式年龄介于1.84~1.73 Ga之间。结合前人研究,我们认为Humber带内各地块发育约1.5 Ga、1.15 Ga和1.0 Ga的3期花岗质岩浆事件,它们具有相似的Hf模式年龄值,暗示它们均来源于古元古代新生地壳物质的再造。带内格林威尔基底地块均为原地基底,且与劳伦大陆远端东部边缘具有一致的岩浆-构造演化史。以上研究对Humber带内格林威尔基底地块的亲缘性及地壳生长提供新的制约,并为阿巴拉契亚造山带内古老微陆块的溯源对比提供依据。展开更多
The problems of joint adaptive waveform design and baseline range design for bistatic radar to maximize the practical radar resolution were considered.Distinguishing from the conventional ambiguity function(AF)-based ...The problems of joint adaptive waveform design and baseline range design for bistatic radar to maximize the practical radar resolution were considered.Distinguishing from the conventional ambiguity function(AF)-based resolution which is only related with the transmitted waveform and bistatic geometry and could be regarded as the potential resolution of a bistatic radar system,the practical resolution involves the effect of waveform,signal-to-noise ratio(SNR)as well as the measurement model.Thus,it is more practical and will have further significant application in target detection and tracking.The constraint optimization procedure of joint adaptive waveform design and baseline range design for maximizing the practical resolution of bistatic radar system under dynamic target scenario was devised.Simulation results show that the range and velocity resolution are enhanced according to the adaptive waveform and bistatic radar configuration.展开更多
The plastic flow behavior of the rotating band material is investigated in this paper. The rotating band material is processed from H96 brass alloy, which is hardened to a much higher yield strength compared to the an...The plastic flow behavior of the rotating band material is investigated in this paper. The rotating band material is processed from H96 brass alloy, which is hardened to a much higher yield strength compared to the annealed one. The dynamically uniaxial compression behavior of the material is tested using the split Hopkinson pressure bar(SHPB) with temperature and strain rate ranging from 297 to 1073 K and500 to 3000 s^(-1), respectively, and a phenomenological plastic flow stress model is developed to describe the mechanical behavior of the material. The material is found to present noticeable temperature sensitivity and weak strain-rate sensitivity. The construction of the plastic flow stress model has two steps. Firstly, three univariate stress functions, taking plastic strain, plastic strain rate and temperature as independent variable, respectively, are proposed by fixing the other two variables. Then, as the three univariate functions describe the special cases of flow stress behavior under various conditions, the principle of stress compatibility is adopted to obtain the complete flow stress function. The numerical results show that the proposed plastic flow stress model is more suitable for the rotating band material than the existing well-known models.展开更多
Research on the range anomaly suppression algorithm in laser radar (ladar) range images is significant in the application and development of ladar. But most of existing algorithms cannot protect the edge and linear ...Research on the range anomaly suppression algorithm in laser radar (ladar) range images is significant in the application and development of ladar. But most of existing algorithms cannot protect the edge and linear target well while suppressing the range anomaly. Aiming at this problem, the differences among the edge, linear target, and range anomaly are analyzed and a novel algo- rithm based on neighborhood pixels detection is proposed. Firstly, the range differences between current pixel and its neighborhood pixels are calculated. Then, the number of neighborhood pixels is detected by the range difference threshold. Finally, whether the current pixel is a range anomaly is distinguished by the neighbor- hood pixel number threshold. Experimental results show that the new algorithm not only has a better range anomaly suppression performance and higher efficiency, but also protects the edge and linear target preferably compared with other algorithms.展开更多
文摘The Fringe Projection Profilometry(FPP)system with a single exposure time or a single projection intensity is limited by the dynamic range of the camera,which can lead to overexposure and underexposure of the image,resulting in point cloud loss or reduced accuracy.To address this issue,unlike the pixel modulation method of projectors,we utilize the characteristics of color projectors where the intensity of the three-channel LED can be controlled independently.We propose a method for separating the projector's three-channel light intensity,combined with a color camera,to achieve single exposure and multi-intensity image acquisition.Further,the crosstalk coefficient is applied to predict the three-channel reflectance of the measured object.By integrating clustering and channel mapping,we establish a pixel-level mapping model between the projector's three-channel current and the camera's three-channel image intensity,which realizes the optimal projection current prediction and the high dynamic range(HDR)image acquisition.The proposed method allows for high-precision three-dimensional(3D)data acquisition of HDR scenes with a single exposure.The effectiveness of this method has been validated through experiments with standard planes and standard steps,showing a significant reduction in mean absolute error(44.6%)compared to existing singleexposure HDR methods.Additionally,the number of images required for acquisition is significantly reduced(by 70.8%)compared to multi-exposure fusion methods.This proposed method has great potential in various FPP-related fields.
文摘Large dynamic range and ultra-wideband receiving abilities are significant for many receivers. With these abilities, receivers can obtain signals with different power in ultra-wideband frequency space without information loss. However, conventional receiving scheme is hard to have large dynamic range and ultra-wideband receiving simultaneously because of the analog-to-digital converter(ADC) dynamic range and sample rate limitations. In this paper, based on the modulated sampling and unlimited sampling, a novel receiving scheme is proposed to achieve large dynamic range and ultra-wideband receiving. Focusing on the single carrier signals, the proposed scheme only uses a single self-rest ADC(SR-ADC) with low sample rate, and it achieves large dynamic range and ultra-wideband receiving simultaneously. Two receiving scenarios are considered, and they are cooperative strong signal receiving and non-cooperative strong/weak signals receiving. In the cooperative receiving scenario, an improved fast recovery method is proposed to obtain the modulated sampling output. In the non-cooperative receiving scenario, the strong and weak signals with different carrier frequencies are considered, and the signal processing method can recover and estimate each signal. Simulation results show that the proposed scheme can realize large dynamic range and ultra-wideband receiving simultaneously when the input signal-to-noise(SNR) ratio is high.
基金supported by the National Natural Science Foundation of China(72101025,72271049),the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities,FRF-IDRY-24-024)the Hebei Natural Science Foundation(F2023501011)+1 种基金the Fundamental Research Funds for the Central Universities(FRF-TP-20-073A1)the R&D Program of Beijing Municipal Education Commission(KM202411232015).
文摘This paper proposes a reliability evaluation model for a multi-dimensional network system,which has potential to be applied to the internet of things or other practical networks.A multi-dimensional network system with one source element and multiple sink elements is considered first.Each element can con-nect with other elements within a stochastic connection ranges.The system is regarded as successful as long as the source ele-ment remains connected with all sink elements.An importance measure is proposed to evaluate the performance of non-source elements.Furthermore,to calculate the system reliability and the element importance measure,a multi-valued decision diagram based approach is structured and its complexity is analyzed.Finally,a numerical example about the signal transfer station system is illustrated to analyze the system reliability and the ele-ment importance measure.
基金supported by Leshan Normal University Scientific Research Start-up Project for Introducing High-level Talents(Grand No.RC2024001).
文摘We establish the Hausdorff dimension of the graph of general Markov processes on Rd based on some probability estimates of the processes staying or leaving small balls in small time.In particular,our results indicate that,for symmetric diffusion processes(withα=2)or symmetricα-stable-like processes(withα∈(0,2))on Rd,it holds almost surely that dimH GrX([0,1])=1{α<1}+(2−1/α)1{α≥1,d=1}+(d∧α)1{α≥1,d≥2}.We also systematically prove the corresponding results about the Hausdorff dimension of the range of the processes.
基金supported by the National Natural Science Foundation of China(62101099)the Chinese Postdoctoral Science Foundation(2021M690558,2022T150100,2018M633352,2019T120825)+3 种基金the Young Elite Scientist Sponsorship Program(YESS20200082)the Aeronautical Science Foundation of China(2022Z017080001)the Open Foundation of Science and Technology on Electronic Information Control Laboratorythe Natural Science Foundation of Sichuan Province(2023NSFSC1386)。
文摘The detection of hypersonic targets usually confronts range migration(RM)issue before coherent integration(CI).The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condition.However,with the increasing requirement of far-range detection,the time bandwidth product,which is corresponding to radar’s mean power,should be promoted in actual application.Thus,the echo signal generates the scale effect(SE)at large time bandwidth product situation,influencing the intra and inter pulse integration performance.To eliminate SE and correct RM,this paper proposes an effective algorithm,i.e.,scaled location rotation transform(ScLRT).The ScLRT can remove SE to obtain the matching pulse compression(PC)as well as correct RM to complete CI via the location rotation transform,being implemented by seeking the actual rotation angle.Compared to the traditional coherent detection algorithms,Sc LRT can address the SE problem to achieve better detection/estimation capabilities.At last,this paper gives several simulations to assess the viability of ScLRT.
基金supported by the Fund for Foreign Scholars in University Research and Teaching Programs(the 111 Project)(B18039)。
文摘The airborne conformal array(CFA)radar's clutter ridges are range-modulated,which result in a bias in the estimation of the clutter covariance matrix(CCM)of the cell under test(CUT),further,reducing the clutter suppression performance of the airborne CFA radar.The clutter ridges can be effectively compensated by the space-time separation interpolation(STSINT)method,which costs less computation than the space-time interpolation(STINT)method,but the performance of interpolation algorithms is seriously affected by the short-range clutter,especially near the platform height.Location distributions of CFA are free,which yields serious impact that range spaces of steering vector matrices are non-orthogonal complement and even no longer disjoint.Further,a new method is proposed that the shortrange clutter is pre-processed by oblique projection with the intersected range spaces(OPIRS),and then clutter data after being pre-processed are compensated to the desired range bin through the STSINT method.The OPIRS also has good compatibility and can be used in combination with many existing methods.At the same time,oblique projectors of OPIRS can be obtained in advance,so the proposed method has almost the same computational load as the traditional compensation method.In addition,the proposed method can perform well when the channel error exists.Computer simulation results verify the effectiveness of the proposed method.
文摘For radar high resolution range profile (HRRP) recognition, three aspects are of great importance to improve the performance, i.e. discrimination for outlier, classification for inner and an accurate description for feature space. To tackle these issues, a novel target recognition method is designed, denoted by the multiple support vectors (multi-SV) method. With the proposed method, a special framework is constructed by a treble correlate support vector model to segment the feature space to two regions with the distribution of density, and then the description and classification hyperplane for each region are achieved. Based on the support vector framework, this method needs less memory and computation complexity to fit practical radar HRRP recognition. Finally, the experiment based on the measured data verifies the excellent performance of this method.
文摘Prior to the collision and accretion of the Kohistan arc terrane during the late Cretaceous and the Indian plate after the early Eocene, the southern margin of Asia along the Hindu Kush, Karakoram and Lhasa block terranes was an active Andean\|type continental margin. In south Tibet this margin was dominated by the calc\|alkaline Ladakh—Gangdese granite batholith, associated andesitic volcanic rocks and continental red\|beds. In contrast, the southern Karakoram exposes deep crustal metamorphic rocks and crustal melt leucogranites. New U\|Pb age dating from the Hunza valley and Baltoro glacier region has revealed four spatially and temporally distinct metamorphic episodes. M1 sillimanite grade metamorphism in Hunza was a late Cretaceous event, probably caused by the accretion of the Kohistan arc to Asia. M2 was the major kyanite and sillimanite grade event during late Eocene—Oligocene crustal thickening and shortening, following India\|Asia collision. Numerous melting events resulted in the formation of crustal melt granites throughout the last 50Ma with multiple generations of dykes and very large scale crustal melting along the Baltoro monzogranite\|leucogranite ba tholith during the late Oligocene—early Miocene. M3 metamorphism was a high\| T , low\| p contact thermal metamorphism around the Baltoro granite. In Hunza, younger staurolite grade metamorphism has been dated by U\|Pb monazites at 16Ma, with the Sumayar leucogranite intruded at 9 5Ma cross\|cutting the metamorphic isograds. In the Baltoro region the youngest metamorphism, M4, is the sillimanite grade Dassu gneiss core complex dated by U\|Pb on monazites as late Miocene—Pliocene (5 4±0 25)Ma with Precambrian protolith zircon cores (1855±11)Ma. Numerous gem\|bearing pegmatite dykes cross\|cut these rocks and are thought to have been intruded within the last 2~3Ma. Structural mapping, combined with U\|Pb geochronology shows that major metamorphic events can be both long\|lasting (up to 20Ma) and very restrictive, both in time and space.
基金Project(2014CB046403)supported by the National Basic Research Program of ChinaProject(2013BAF07B01)supported by the National Key Technology R&D Program of China
文摘A novel performance model of losses of pump was presented,which allows an explicit insight into the losses of various friction pairs of pump.The aim is to clarify that to what extent the hydro-mechanical losses affect efficiency,and to further gain an insight into the variation and distribution characteristics of hydro-mechanical losses over wide operating ranges.A good agreement is found in the comparisons between simulation and experimental results.At rated speed,the hydro-mechanical losses take a proportion ranging from 87% to 89% and from 68% to 97%,respectively,of the total power losses of pump working under 5 MPa pressure conditions,and 13% of full displacement conditions.Furthermore,within the variation of speed ranging from 48% to 100% of rated speed,and pressure ranging from 14% to 100% of rated pressure,the main sources of hydro-mechanical losses change to slipper swash plate pair and valve plate cylinder pair at low displacement conditions,from the piston cylinder pair and slipper swash plate pair at full displacement conditions.Besides,the hydro-mechanical losses in ball guide retainer pair are found to be almost independent of pressure.The derived conclusions clarify the main orientations of efforts to improve the efficiency performance of pump,and the proposed model can service for the design of pump with higher efficiency performance.
基金supported by the National Natural Science Foundation of China (6087213461072117)
文摘Orthogonal frequency division multiplexing(OFDM) radar with multicarrier phase-coded waveforms has been recently introduced to achieve high range resolution.The conventional method for obtaining the high resolution range profile(HRRP) is based on matched filters.A method of synthesizing HRRP based on the fast Fourier transform(FFT) and decoding is proposed.The mathematical expressions of HRRP are derived by assuming an elementary scenario of point-scattering targets.Based on the characteristic of OFDM multicarrier signals,it mainly analyzes the influence on HRRP exerted by several factors,such as velocity compensation errors,the sampling frequency offset,and so on.The conclusions are significant for the design of the OFDM imaging radar.Finally,the simulation results demonstrate the validity of the conclusions.
基金supported by the National Natural Science Foundation of China(1197428611904274)+1 种基金the Shaanxi Young Science and Technology Star Program(2021KJXX-07)the fundamental research funding for characteristic disciplines(G2022WD0235)。
文摘Taking the real part and the imaginary part of complex sound pressure of the sound field as features,a transfer learning model is constructed.Based on the pre-training of a large amount of underwater acoustic data in the preselected sea area using the convolutional neural network(CNN),the few-shot underwater acoustic data in the test sea area are retrained to study the underwater sound source ranging problem.The S5 voyage data of SWellEX-96 experiment is used to verify the proposed method,realize the range estimation for the shallow source in the experiment,and compare the range estimation performance of the underwater target sound source of four methods:matched field processing(MFP),generalized regression neural network(GRNN),traditional CNN,and transfer learning.Experimental data processing results show that the transfer learning model based on residual CNN can effectively realize range estimation in few-shot scenes,and the estimation performance is remarkably better than that of other methods.
文摘加拿大阿巴拉契亚造山带纽芬兰岛Humber带基底地块属性及地壳生长演化是近年来关注的科学问题,尤其是岛内西南部的Indian Head Range地块,其年龄组成与同位素特征研究对区域基底构造属性划分与对比至关重要。本文对Indian Head Range地块内的二长花岗岩岩体进行了锆石U⁃Pb定年,得到其^(206)Pb/^(238)U加权平均年龄值为1149±4 Ma,代表该岩体的侵位年龄。这一定年结果表明该岩体具有中元古代晚期的年龄,为该地块格林威尔期岩浆事件的存在提供了新的年龄证据。Nd⁃Hf同位素分析结果显示,该二长花岗岩岩体εNd值为-2.3,εHf值介于+1.93~+3.65之间,两阶段Hf模式年龄介于1.84~1.73 Ga之间。结合前人研究,我们认为Humber带内各地块发育约1.5 Ga、1.15 Ga和1.0 Ga的3期花岗质岩浆事件,它们具有相似的Hf模式年龄值,暗示它们均来源于古元古代新生地壳物质的再造。带内格林威尔基底地块均为原地基底,且与劳伦大陆远端东部边缘具有一致的岩浆-构造演化史。以上研究对Humber带内格林威尔基底地块的亲缘性及地壳生长提供新的制约,并为阿巴拉契亚造山带内古老微陆块的溯源对比提供依据。
基金Project supported by the Program for New Century Excellent Talents in University,ChinaProject(61171133)supported by the National Natural Science Foundation of China+2 种基金Project(11JJ1010)supported by the Natural Science Fund for Distinguished Young Scholars of Hunan Province,ChinaProject(61101182)supported by the National Natural Science Foundation for Young Scientists of ChinaProject(20124307110013)supported by the Doctoral Program of Higher Education of China
文摘The problems of joint adaptive waveform design and baseline range design for bistatic radar to maximize the practical radar resolution were considered.Distinguishing from the conventional ambiguity function(AF)-based resolution which is only related with the transmitted waveform and bistatic geometry and could be regarded as the potential resolution of a bistatic radar system,the practical resolution involves the effect of waveform,signal-to-noise ratio(SNR)as well as the measurement model.Thus,it is more practical and will have further significant application in target detection and tracking.The constraint optimization procedure of joint adaptive waveform design and baseline range design for maximizing the practical resolution of bistatic radar system under dynamic target scenario was devised.Simulation results show that the range and velocity resolution are enhanced according to the adaptive waveform and bistatic radar configuration.
基金the support from National Natural Science Foundation of China (Grant Nos. 11702137 and U2141246)。
文摘The plastic flow behavior of the rotating band material is investigated in this paper. The rotating band material is processed from H96 brass alloy, which is hardened to a much higher yield strength compared to the annealed one. The dynamically uniaxial compression behavior of the material is tested using the split Hopkinson pressure bar(SHPB) with temperature and strain rate ranging from 297 to 1073 K and500 to 3000 s^(-1), respectively, and a phenomenological plastic flow stress model is developed to describe the mechanical behavior of the material. The material is found to present noticeable temperature sensitivity and weak strain-rate sensitivity. The construction of the plastic flow stress model has two steps. Firstly, three univariate stress functions, taking plastic strain, plastic strain rate and temperature as independent variable, respectively, are proposed by fixing the other two variables. Then, as the three univariate functions describe the special cases of flow stress behavior under various conditions, the principle of stress compatibility is adopted to obtain the complete flow stress function. The numerical results show that the proposed plastic flow stress model is more suitable for the rotating band material than the existing well-known models.
文摘Research on the range anomaly suppression algorithm in laser radar (ladar) range images is significant in the application and development of ladar. But most of existing algorithms cannot protect the edge and linear target well while suppressing the range anomaly. Aiming at this problem, the differences among the edge, linear target, and range anomaly are analyzed and a novel algo- rithm based on neighborhood pixels detection is proposed. Firstly, the range differences between current pixel and its neighborhood pixels are calculated. Then, the number of neighborhood pixels is detected by the range difference threshold. Finally, whether the current pixel is a range anomaly is distinguished by the neighbor- hood pixel number threshold. Experimental results show that the new algorithm not only has a better range anomaly suppression performance and higher efficiency, but also protects the edge and linear target preferably compared with other algorithms.