The ductile-to-brittle transition temperature(DBTT)of high strength steels can be optimized by tailoring microstructure and crystallographic orientation characteristics,where the start cooling temperature plays a key ...The ductile-to-brittle transition temperature(DBTT)of high strength steels can be optimized by tailoring microstructure and crystallographic orientation characteristics,where the start cooling temperature plays a key role.In this work,X70 steels with different start cooling temperatures were prepared through thermo-mechanical control process.The quasi-polygonal ferrite(QF),granular bainite(GB),bainitic ferrite(BF)and martensite-austenite constituents were formed at the start cooling temperatures of 780℃(C1),740℃(C2)and 700℃(C3).As start cooling temperature decreased,the amount of GB decreased,the microstructure of QF and BF increased.Microstructure characteristics of the three samples,such as high-angle grain boundaries(HAGBs),MA constituents and crystallographic orientation,also varied with the start cooling temperatures.C2 sample had the lowest DBTT value(−86℃)for its highest fraction of HAGBs,highest content of<110>oriented grains and lowest content of<001>oriented grains parallel to TD.The high density of{332}<113>and low density of rotated cube{001}<110>textures also contributed to the best impact toughness of C2 sample.In addition,a modified model was used in this paper to quantitatively predict the approximate DBTT value of steels.展开更多
Recent advancements have led to the synthesis of various new metal-containing explosives,particularly energetic metal-organic frameworks(EMOFs),which feature high-energy ligands within well-ordered crystalline structu...Recent advancements have led to the synthesis of various new metal-containing explosives,particularly energetic metal-organic frameworks(EMOFs),which feature high-energy ligands within well-ordered crystalline structures.These explosives exhibit significant advantages over traditional compounds,including higher density,greater heats of detonation,improved mechanical hardness,and excellent thermal stability.To effectively evaluate their detonation performance,it is crucial to have a reliable method for predicting detonation heat,velocity,and pressure.This study leverages experimental data and outputs from the leading commercial computer code to identify suitable decomposition pathways for different metal oxides,facilitating straightforward calculations for the detonation performance of alkali metal salts,and metal coordination compounds,along with EMOFs.The new model enhances predictive reliability for detonation velocities,aligning more closely with experimental results,as evi-denced by a root mean square error(RMSE)of 0.68 km/s compared to 1.12 km/s for existing methods.Furthermore,it accommodates a broader range of compounds,including those containing Sr,Cd,and Ag,and provides predictions for EMOFs that are more consistent with computer code outputs than previous predictive models.展开更多
In this study,the effect of inclination angles relative to the building direction in the additively manufactured eutectic Al-5Mg-2Si alloy was investigated through the laser powder bed fusion(LPBF).The microstructures...In this study,the effect of inclination angles relative to the building direction in the additively manufactured eutectic Al-5Mg-2Si alloy was investigated through the laser powder bed fusion(LPBF).The microstructures and mechanical properties of the Al-5Mg-2Si alloy manufactured with different inclination angles(0°,30°,45°,60°and 90°)were reported and discussed.It is found that the“semicircular”melt pool(MP)in the load bearing face of 0°sample was eventually transformed into“stripe-like”MP in the 90°sample,accompanied by an increased fraction of melt pool boundaries(MPBs).Moreover,the microstructural analysis revealed that the columnar-to-equiaxed transition(CET)of theα-Al grains and eutectic Mg2Si was completed in the 90°sample,which were significantly refined with the average size of 10.6μm and 0.44μm,respectively.It is also found that the 90°sample exhibited good combination of strength and elongation(i.e.yield strength of 393 MPa,ultimate tensile strength of 483 MPa and elongation of 8.1%).The anisotropic mechanical properties were highly associated with the refined microstructures,thermal stress,and density of MPBs.Additionally,the CET driven by inclination angles was attributed to the variation of thermal conditions inside the local MPs.展开更多
Porous spherical MnCo_(2)S_(4) was synthesized by a simple solvothermal method.Thanks to the well-designedbimetallic composition and the unique porous spherical structure,the MnCo_(2)S_(4) electrode exhibited an excep...Porous spherical MnCo_(2)S_(4) was synthesized by a simple solvothermal method.Thanks to the well-designedbimetallic composition and the unique porous spherical structure,the MnCo_(2)S_(4) electrode exhibited an exceptionalspecific capacitance of 190.8 mAh·g^(-1)at 1 A·g^(-1),greatly higher than the corresponding monometallic sulfides MnS(31.7 mAh·g^(-1))and Co_(3)S_(4)(86.7 mAh·g^(-1)).Impressively,the as-assembled MnCo_(2)S_(4)||porous carbon(PC)hybridsupercapacitor(HSC),showed an outstanding energy density of 76.88 Wh·kg^(-1)at a power density of 374.5 W·kg^(-1),remarkable cyclic performance with a capacity retention of 86.8% after 10000 charge-discharge cycles at 5 A·g^(-1),and excellent Coulombic efficiency of 99.7%.展开更多
High-performance graphite materials have important roles in aerospace and nuclear reactor technologies because of their outstanding chemical stability and high-temperature performance.Their traditional production meth...High-performance graphite materials have important roles in aerospace and nuclear reactor technologies because of their outstanding chemical stability and high-temperature performance.Their traditional production method relies on repeated impregnation-carbonization and graphitization,and is plagued by lengthy preparation cycles and high energy consumption.Phase transition-assisted self-pressurized selfsintering technology can rapidly produce high-strength graphite materials,but the fracture strain of the graphite materials produced is poor.To solve this problem,this study used a two-step sintering method to uniformly introduce micro-nano pores into natural graphite-based bulk graphite,achieving improved fracture strain of the samples without reducing their density and mechanical properties.Using natural graphite powder,micron-diamond,and nano-diamond as raw materials,and by precisely controlling the staged pressure release process,the degree of diamond phase transition expansion was effectively regulated.The strain-to-failure of the graphite samples reached 1.2%,a 35%increase compared to samples produced by fullpressure sintering.Meanwhile,their flexural strength exceeded 110 MPa,and their density was over 1.9 g/cm^(3).The process therefore produced both a high strength and a high fracture strain.The interface evolution and toughening mechanism during the two-step sintering process were investigated.It is believed that the micro-nano pores formed have two roles:as stress concentrators they induce yielding by shear and as multi-crack propagation paths they significantly lengthen the crack propagation path.The two-step sintering phase transition strategy introduces pores and provides a new approach for increasing the fracture strain of brittle materials.展开更多
The use of lithium-sulfur(Li-S)batteries is limited by sulfur redox reactions involving multi-phase transformations,especially at low-temperatures.To address this issue,we report a material(FCNS@NCFs)consisting of nit...The use of lithium-sulfur(Li-S)batteries is limited by sulfur redox reactions involving multi-phase transformations,especially at low-temperatures.To address this issue,we report a material(FCNS@NCFs)consisting of nitrogen-doped carbon fibers loaded with a ternary metal sulf-ide((Fe,Co,Ni)_(9)S_(8))for use as the sulfur host in Li-S batteries.This materi-al was prepared using transfer blot filter paper as the carbon precursor,thiourea as the source of nitrogen and sulfur,and FeCl_(3)·6H_(2)O,CoCl_(2)·6H_(2)O and NiCl_(2)·6H_(2)O as the metal ion sources.It was synthesized by an impreg-nation method followed by calcination.The nitrogen doping significantly in-creased the conductivity of the host,and the metal sulfides have excellent catalytic activities.Theoretical calculations,and adsorption and deposition experiments show that active sites on the surface of FCNS@NCFs selectively adsorb polysulfides,facilitate rapid adsorption and conversion,prevent cathode passivation and inhib-it the polysulfide shuttling.The FCNS@NCFs used as the sulfur host has excellent electrochemical properties.Its initial dis-charge capacity is 1639.0 mAh g^(−1) at 0.2 C and room temperature,and it remains a capacity of 1255.1 mAh g^(−1) after 100 cycles.At−20~C,it has an initial discharge capacity of 1578.5 mAh g^(−1) at 0.2 C,with a capacity of 867.5 mAh g^(−1) after 100 cycles.Its excellent performance at both ambient and low temperatures suggests a new way to produce high-performance low-temper-ature Li-S batteries.展开更多
As a representative transition metal dichalcogenides(TMD),NiTe_(2)has an ultra-fast optical response,high carrier mobility,and excellent environmental stability.It has a broad application prospect in the fields of ene...As a representative transition metal dichalcogenides(TMD),NiTe_(2)has an ultra-fast optical response,high carrier mobility,and excellent environmental stability.It has a broad application prospect in the fields of ener-gy,biomedicine,optoelectronic devices,and so on.At present,there have been scant reports on the application of NiTe_(2)in the field of ultrafast photonics.In this work,NiTe_(2)was synthesized by chemical vapor deposition(CVD)and integrated with a tapered optical fiber to achieve mode-locking in an erbium-doped fiber laser(EDFL)and a thu-lium-doped fiber laser(TDFL).The mode-locked EDFL exhibited a pulse width of 678 fs and an output power of 3.92 mW.The pulse width of mode-locked TDFL was estimated to have a pulse width of 694 fs with an output power of 21.64 mW.These results demonstrate that NiTe_(2)is an effective saturable absorber material with potential applica-tions in the field of ultrafast optics.展开更多
This paper proposes a novel modified uni-traveling-carrier photodiode(MUTC-PD)featuring an electric field regulation layer:a p-type doped thin layer inserted behind the PD’s n-doped cliff layer.This electric field re...This paper proposes a novel modified uni-traveling-carrier photodiode(MUTC-PD)featuring an electric field regulation layer:a p-type doped thin layer inserted behind the PD’s n-doped cliff layer.This electric field regulation layer enhances the PD’s performance by not only reducing and smoothing the electric field intensity in the collector layer,allowing photo-generated electrons to transit at peak drift velocity,but also improving the electric field intensity in the depleted absorber layer and optimizing the photo-generated carriers’saturated transit performance.Additionally,the transport characteristics of the peak drift velocity of photogenerated electrons in the device’s collection layer can be used to optimize its parasitic characteristics.The electron’s peak drift velocity compensates for the lost transit time.Thus improving the 3 dB bandwidth of the PD’s photo response.Finally obtains a MUTC-PD with a 3 dB bandwidth of 68 GHz at a responsivity of 0.502 A/W,making it suitable for 100 Gbit/s optical receivers.展开更多
Lonsdaleite,also known as hexagonal diamond,is an allotrope of carbon with a hexagonal crystal structure,which was discovered in the nanostructure of the Canyon Diablo meteorite.Theoretical calculations have shown tha...Lonsdaleite,also known as hexagonal diamond,is an allotrope of carbon with a hexagonal crystal structure,which was discovered in the nanostructure of the Canyon Diablo meteorite.Theoretical calculations have shown that this structure gives it exceptional physical properties that exceed those of cubic diamond,making it highly promising for groundbreaking applications in superhard cutting tools,wide-bandgap semiconductor devices,and materials for extreme environments.As a result,the controllable synthesis of hexagonal diamond has emerged as a cutting-edge research focus in materials science.This review briefly outlines the progress in this area,with a focus on the mechanisms governing its key synthesis conditions,its intrinsic physical properties,and its potential applications in various fields.展开更多
The electricity-hydrogen integrated energy system(EH-IES)enables synergistic operation of electricity,heat,and hydrogen subsystems,supporting renewable energy integration and efficient multi-energy utilization in futu...The electricity-hydrogen integrated energy system(EH-IES)enables synergistic operation of electricity,heat,and hydrogen subsystems,supporting renewable energy integration and efficient multi-energy utilization in future low carbon societies.However,uncertainties from renewable energy and load variability threaten system safety and economy.Conventional chance-constrained programming(CCP)ensures reliable operation by limiting risk.However,increasing source-load uncertainties that can render CCP models infeasible and exacerbate operational risks.To address this,this paper proposes a risk-adjustable chance-constrained goal programming(RACCGP)model,integrating CCP and goal programming to balance risk and cost based on system risk assessment.An intelligent nonlinear goal programming method based on the state transition algorithm(STA)is developed,along with an improved discretized step transformation,to handle model nonlinearity and enhance computational efficiency.Experimental results show that the proposed model reduces costs while controlling risk compared to traditional CCP,and the solution method outperforms average sample sampling in efficiency and solution quality.展开更多
During the electromagnetic railgun launch process,high temperature and high current conditions can lead to armature wear,affecting armature/rail contact and degrading launch performance.This paper starts with the anal...During the electromagnetic railgun launch process,high temperature and high current conditions can lead to armature wear,affecting armature/rail contact and degrading launch performance.This paper starts with the analysis of the metal liquid film formation at the armature/rail contact interface.1D and 3D models are developed based on the characteristic relational equation obtained from the melt liquid film model.These models incorporate thermodynamic equilibrium phase diagram,transient heat and mass transfer model,copper-aluminum alloy reaction model,nonlinear electrical conductivity relational equation and nonlinear thermal conductivity relational equation to analyze the temperature distribution and copper-aluminum intermetallic compounds(Cu-Al IMCs)formation in the melt liquid film.The wear mechanism and influence law of armature are explained in detail from different perspectives to un-derstand and predict the transition and gouging phenomena at the contact interface.The model's validity is confirmed by the results of electromagnetic launch experiments,providing insights for future structure design and material selection of the armature and rail.展开更多
A new robust bio-inspired route by using lysozyme aqueous solution for surface modification on 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX)was described in this paper.HMX crystals were coated by in situ phase transitio...A new robust bio-inspired route by using lysozyme aqueous solution for surface modification on 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX)was described in this paper.HMX crystals were coated by in situ phase transition of lysozyme(PTL)molecules.The HMX decorated by PTL was characterized by SEM,XRD,FTIR and XPS,demonstrating a dense core-shell coating layer.The coverage of lysozyme on HMX crystal was calculated by the ratio of sulfur content.The surface coverage increased from 60.5% to 93.5% when the content of PTL was changed from 0.5 wt% to 2.0 wt%,indicating efficient coating.The thermal stability of HMX was investigated by in situ XRD and DSC.The thermal phase transition temperature of HMX(β to δ phase)was delayed by 42℃ with 2.0 wt% PTL coating,which prevented HMX from thermal damage and sensitivity by the effect of PTL coating.After heating at 215℃,large cracks appeared in the naked HMX crystal,while the PTL coated HMX still maintained intact,with the impact energy of HMX dropped dramatically from 5 J to 2 J.However,the impact energy of HMX with 1.0 wt% and 2.0 wt% coating content(HMX@PTL-1.0 and HMX@PTL-2.0)was unchanged(5 J).Present results potentially enable large-scale fabrication of polymorphic energetic materials with outstanding thermal stability by novel lysozyme coating.展开更多
In this work, comprehensive studies of 2,4-dinitroanisole(2,4DNAN) were carried out using powder thermorentgenography of the internal standard. The time of the complete polymorphic transition in the solid phase β→a ...In this work, comprehensive studies of 2,4-dinitroanisole(2,4DNAN) were carried out using powder thermorentgenography of the internal standard. The time of the complete polymorphic transition in the solid phase β→a in 2,4DNAN under various combinations of conditions has been determined. It has been established that, regardless of the season of manufacture of the substance, when it is stored for 8-9months, with a change in ambient temperature from minus 30℃ to plus 30℃, a complete polymorphic transition β→a occurs. When stored in conditions below minus 5℃, polymorphic transition does not occur. When stored in conditions above plus 30℃ in a closed container, polymorphic transition occurs within 3 weeks. The polymorphic transition is accompanied by a decrease in density by 1.3%-1.5% and an increase in melting temperature by 10-12℃, depending on the degree of purity of the starting substance. The activation energy of the molecular rearrangement was 68-70 k J/mol(16.5 ± 3 kcal/mol). The mechanism of polymorphic transition has been evaluated, which is presumably based on internal homodiffusion and energy transfer to the surface of the mass of powder particles and the product. The average activation energy of the polymorphic transition process was 110 ± 6.2 k J/mol(26.2 kcal/mol). In an open container, reactions proceed by a homogeneous mechanism, and in a closed container by a heterogeneous mechanism involving the gas phase.展开更多
基金Project(2018XK2301) supported by the Change-Zhu-Tan National Independent Innavation Demonstration Zone Special Program,China。
文摘The ductile-to-brittle transition temperature(DBTT)of high strength steels can be optimized by tailoring microstructure and crystallographic orientation characteristics,where the start cooling temperature plays a key role.In this work,X70 steels with different start cooling temperatures were prepared through thermo-mechanical control process.The quasi-polygonal ferrite(QF),granular bainite(GB),bainitic ferrite(BF)and martensite-austenite constituents were formed at the start cooling temperatures of 780℃(C1),740℃(C2)and 700℃(C3).As start cooling temperature decreased,the amount of GB decreased,the microstructure of QF and BF increased.Microstructure characteristics of the three samples,such as high-angle grain boundaries(HAGBs),MA constituents and crystallographic orientation,also varied with the start cooling temperatures.C2 sample had the lowest DBTT value(−86℃)for its highest fraction of HAGBs,highest content of<110>oriented grains and lowest content of<001>oriented grains parallel to TD.The high density of{332}<113>and low density of rotated cube{001}<110>textures also contributed to the best impact toughness of C2 sample.In addition,a modified model was used in this paper to quantitatively predict the approximate DBTT value of steels.
基金the research committee at Malek Ashtar University of Technology (MUT) for their invaluable support of this project
文摘Recent advancements have led to the synthesis of various new metal-containing explosives,particularly energetic metal-organic frameworks(EMOFs),which feature high-energy ligands within well-ordered crystalline structures.These explosives exhibit significant advantages over traditional compounds,including higher density,greater heats of detonation,improved mechanical hardness,and excellent thermal stability.To effectively evaluate their detonation performance,it is crucial to have a reliable method for predicting detonation heat,velocity,and pressure.This study leverages experimental data and outputs from the leading commercial computer code to identify suitable decomposition pathways for different metal oxides,facilitating straightforward calculations for the detonation performance of alkali metal salts,and metal coordination compounds,along with EMOFs.The new model enhances predictive reliability for detonation velocities,aligning more closely with experimental results,as evi-denced by a root mean square error(RMSE)of 0.68 km/s compared to 1.12 km/s for existing methods.Furthermore,it accommodates a broader range of compounds,including those containing Sr,Cd,and Ag,and provides predictions for EMOFs that are more consistent with computer code outputs than previous predictive models.
基金Project(52071343)supported by the National Natural Science Foundation of China。
文摘In this study,the effect of inclination angles relative to the building direction in the additively manufactured eutectic Al-5Mg-2Si alloy was investigated through the laser powder bed fusion(LPBF).The microstructures and mechanical properties of the Al-5Mg-2Si alloy manufactured with different inclination angles(0°,30°,45°,60°and 90°)were reported and discussed.It is found that the“semicircular”melt pool(MP)in the load bearing face of 0°sample was eventually transformed into“stripe-like”MP in the 90°sample,accompanied by an increased fraction of melt pool boundaries(MPBs).Moreover,the microstructural analysis revealed that the columnar-to-equiaxed transition(CET)of theα-Al grains and eutectic Mg2Si was completed in the 90°sample,which were significantly refined with the average size of 10.6μm and 0.44μm,respectively.It is also found that the 90°sample exhibited good combination of strength and elongation(i.e.yield strength of 393 MPa,ultimate tensile strength of 483 MPa and elongation of 8.1%).The anisotropic mechanical properties were highly associated with the refined microstructures,thermal stress,and density of MPBs.Additionally,the CET driven by inclination angles was attributed to the variation of thermal conditions inside the local MPs.
文摘Porous spherical MnCo_(2)S_(4) was synthesized by a simple solvothermal method.Thanks to the well-designedbimetallic composition and the unique porous spherical structure,the MnCo_(2)S_(4) electrode exhibited an exceptionalspecific capacitance of 190.8 mAh·g^(-1)at 1 A·g^(-1),greatly higher than the corresponding monometallic sulfides MnS(31.7 mAh·g^(-1))and Co_(3)S_(4)(86.7 mAh·g^(-1)).Impressively,the as-assembled MnCo_(2)S_(4)||porous carbon(PC)hybridsupercapacitor(HSC),showed an outstanding energy density of 76.88 Wh·kg^(-1)at a power density of 374.5 W·kg^(-1),remarkable cyclic performance with a capacity retention of 86.8% after 10000 charge-discharge cycles at 5 A·g^(-1),and excellent Coulombic efficiency of 99.7%.
基金Natural Science Foundation of Shanghai(24ZR1400800)he Natural Science Foundation of China(U23A20685,52073058,91963204)+1 种基金the National Key R&D Program of China(2021YFB3701400)Shanghai Sailing Program(23YF1400200)。
文摘High-performance graphite materials have important roles in aerospace and nuclear reactor technologies because of their outstanding chemical stability and high-temperature performance.Their traditional production method relies on repeated impregnation-carbonization and graphitization,and is plagued by lengthy preparation cycles and high energy consumption.Phase transition-assisted self-pressurized selfsintering technology can rapidly produce high-strength graphite materials,but the fracture strain of the graphite materials produced is poor.To solve this problem,this study used a two-step sintering method to uniformly introduce micro-nano pores into natural graphite-based bulk graphite,achieving improved fracture strain of the samples without reducing their density and mechanical properties.Using natural graphite powder,micron-diamond,and nano-diamond as raw materials,and by precisely controlling the staged pressure release process,the degree of diamond phase transition expansion was effectively regulated.The strain-to-failure of the graphite samples reached 1.2%,a 35%increase compared to samples produced by fullpressure sintering.Meanwhile,their flexural strength exceeded 110 MPa,and their density was over 1.9 g/cm^(3).The process therefore produced both a high strength and a high fracture strain.The interface evolution and toughening mechanism during the two-step sintering process were investigated.It is believed that the micro-nano pores formed have two roles:as stress concentrators they induce yielding by shear and as multi-crack propagation paths they significantly lengthen the crack propagation path.The two-step sintering phase transition strategy introduces pores and provides a new approach for increasing the fracture strain of brittle materials.
基金partially supported by National Natural Science Foundation of China(52172250)Institute of Process Engineering(IPE)Project for Frontier Basic Research(QYJC-2023-06)。
文摘The use of lithium-sulfur(Li-S)batteries is limited by sulfur redox reactions involving multi-phase transformations,especially at low-temperatures.To address this issue,we report a material(FCNS@NCFs)consisting of nitrogen-doped carbon fibers loaded with a ternary metal sulf-ide((Fe,Co,Ni)_(9)S_(8))for use as the sulfur host in Li-S batteries.This materi-al was prepared using transfer blot filter paper as the carbon precursor,thiourea as the source of nitrogen and sulfur,and FeCl_(3)·6H_(2)O,CoCl_(2)·6H_(2)O and NiCl_(2)·6H_(2)O as the metal ion sources.It was synthesized by an impreg-nation method followed by calcination.The nitrogen doping significantly in-creased the conductivity of the host,and the metal sulfides have excellent catalytic activities.Theoretical calculations,and adsorption and deposition experiments show that active sites on the surface of FCNS@NCFs selectively adsorb polysulfides,facilitate rapid adsorption and conversion,prevent cathode passivation and inhib-it the polysulfide shuttling.The FCNS@NCFs used as the sulfur host has excellent electrochemical properties.Its initial dis-charge capacity is 1639.0 mAh g^(−1) at 0.2 C and room temperature,and it remains a capacity of 1255.1 mAh g^(−1) after 100 cycles.At−20~C,it has an initial discharge capacity of 1578.5 mAh g^(−1) at 0.2 C,with a capacity of 867.5 mAh g^(−1) after 100 cycles.Its excellent performance at both ambient and low temperatures suggests a new way to produce high-performance low-temper-ature Li-S batteries.
基金Supported by Guangdong Basic and Applied Basic Research Fund,China(2024A1515012429)。
文摘As a representative transition metal dichalcogenides(TMD),NiTe_(2)has an ultra-fast optical response,high carrier mobility,and excellent environmental stability.It has a broad application prospect in the fields of ener-gy,biomedicine,optoelectronic devices,and so on.At present,there have been scant reports on the application of NiTe_(2)in the field of ultrafast photonics.In this work,NiTe_(2)was synthesized by chemical vapor deposition(CVD)and integrated with a tapered optical fiber to achieve mode-locking in an erbium-doped fiber laser(EDFL)and a thu-lium-doped fiber laser(TDFL).The mode-locked EDFL exhibited a pulse width of 678 fs and an output power of 3.92 mW.The pulse width of mode-locked TDFL was estimated to have a pulse width of 694 fs with an output power of 21.64 mW.These results demonstrate that NiTe_(2)is an effective saturable absorber material with potential applica-tions in the field of ultrafast optics.
文摘This paper proposes a novel modified uni-traveling-carrier photodiode(MUTC-PD)featuring an electric field regulation layer:a p-type doped thin layer inserted behind the PD’s n-doped cliff layer.This electric field regulation layer enhances the PD’s performance by not only reducing and smoothing the electric field intensity in the collector layer,allowing photo-generated electrons to transit at peak drift velocity,but also improving the electric field intensity in the depleted absorber layer and optimizing the photo-generated carriers’saturated transit performance.Additionally,the transport characteristics of the peak drift velocity of photogenerated electrons in the device’s collection layer can be used to optimize its parasitic characteristics.The electron’s peak drift velocity compensates for the lost transit time.Thus improving the 3 dB bandwidth of the PD’s photo response.Finally obtains a MUTC-PD with a 3 dB bandwidth of 68 GHz at a responsivity of 0.502 A/W,making it suitable for 100 Gbit/s optical receivers.
基金the National Natural Science Foundation of China(12274170 and 52225203)。
文摘Lonsdaleite,also known as hexagonal diamond,is an allotrope of carbon with a hexagonal crystal structure,which was discovered in the nanostructure of the Canyon Diablo meteorite.Theoretical calculations have shown that this structure gives it exceptional physical properties that exceed those of cubic diamond,making it highly promising for groundbreaking applications in superhard cutting tools,wide-bandgap semiconductor devices,and materials for extreme environments.As a result,the controllable synthesis of hexagonal diamond has emerged as a cutting-edge research focus in materials science.This review briefly outlines the progress in this area,with a focus on the mechanisms governing its key synthesis conditions,its intrinsic physical properties,and its potential applications in various fields.
基金Project(2022YFC2904502)supported by the National Key Research and Development Program of ChinaProject(62273357)supported by the National Natural Science Foundation of China。
文摘The electricity-hydrogen integrated energy system(EH-IES)enables synergistic operation of electricity,heat,and hydrogen subsystems,supporting renewable energy integration and efficient multi-energy utilization in future low carbon societies.However,uncertainties from renewable energy and load variability threaten system safety and economy.Conventional chance-constrained programming(CCP)ensures reliable operation by limiting risk.However,increasing source-load uncertainties that can render CCP models infeasible and exacerbate operational risks.To address this,this paper proposes a risk-adjustable chance-constrained goal programming(RACCGP)model,integrating CCP and goal programming to balance risk and cost based on system risk assessment.An intelligent nonlinear goal programming method based on the state transition algorithm(STA)is developed,along with an improved discretized step transformation,to handle model nonlinearity and enhance computational efficiency.Experimental results show that the proposed model reduces costs while controlling risk compared to traditional CCP,and the solution method outperforms average sample sampling in efficiency and solution quality.
文摘During the electromagnetic railgun launch process,high temperature and high current conditions can lead to armature wear,affecting armature/rail contact and degrading launch performance.This paper starts with the analysis of the metal liquid film formation at the armature/rail contact interface.1D and 3D models are developed based on the characteristic relational equation obtained from the melt liquid film model.These models incorporate thermodynamic equilibrium phase diagram,transient heat and mass transfer model,copper-aluminum alloy reaction model,nonlinear electrical conductivity relational equation and nonlinear thermal conductivity relational equation to analyze the temperature distribution and copper-aluminum intermetallic compounds(Cu-Al IMCs)formation in the melt liquid film.The wear mechanism and influence law of armature are explained in detail from different perspectives to un-derstand and predict the transition and gouging phenomena at the contact interface.The model's validity is confirmed by the results of electromagnetic launch experiments,providing insights for future structure design and material selection of the armature and rail.
基金the China National Nature Science Foundation(Grant No.12102404)。
文摘A new robust bio-inspired route by using lysozyme aqueous solution for surface modification on 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX)was described in this paper.HMX crystals were coated by in situ phase transition of lysozyme(PTL)molecules.The HMX decorated by PTL was characterized by SEM,XRD,FTIR and XPS,demonstrating a dense core-shell coating layer.The coverage of lysozyme on HMX crystal was calculated by the ratio of sulfur content.The surface coverage increased from 60.5% to 93.5% when the content of PTL was changed from 0.5 wt% to 2.0 wt%,indicating efficient coating.The thermal stability of HMX was investigated by in situ XRD and DSC.The thermal phase transition temperature of HMX(β to δ phase)was delayed by 42℃ with 2.0 wt% PTL coating,which prevented HMX from thermal damage and sensitivity by the effect of PTL coating.After heating at 215℃,large cracks appeared in the naked HMX crystal,while the PTL coated HMX still maintained intact,with the impact energy of HMX dropped dramatically from 5 J to 2 J.However,the impact energy of HMX with 1.0 wt% and 2.0 wt% coating content(HMX@PTL-1.0 and HMX@PTL-2.0)was unchanged(5 J).Present results potentially enable large-scale fabrication of polymorphic energetic materials with outstanding thermal stability by novel lysozyme coating.
基金supported by the Ministry of Science and Higher Education of the Russian Federation(Agreement with Zelinsky Institute of Organic Chemistry RAS Grant No.075-15-2020-803).
文摘In this work, comprehensive studies of 2,4-dinitroanisole(2,4DNAN) were carried out using powder thermorentgenography of the internal standard. The time of the complete polymorphic transition in the solid phase β→a in 2,4DNAN under various combinations of conditions has been determined. It has been established that, regardless of the season of manufacture of the substance, when it is stored for 8-9months, with a change in ambient temperature from minus 30℃ to plus 30℃, a complete polymorphic transition β→a occurs. When stored in conditions below minus 5℃, polymorphic transition does not occur. When stored in conditions above plus 30℃ in a closed container, polymorphic transition occurs within 3 weeks. The polymorphic transition is accompanied by a decrease in density by 1.3%-1.5% and an increase in melting temperature by 10-12℃, depending on the degree of purity of the starting substance. The activation energy of the molecular rearrangement was 68-70 k J/mol(16.5 ± 3 kcal/mol). The mechanism of polymorphic transition has been evaluated, which is presumably based on internal homodiffusion and energy transfer to the surface of the mass of powder particles and the product. The average activation energy of the polymorphic transition process was 110 ± 6.2 k J/mol(26.2 kcal/mol). In an open container, reactions proceed by a homogeneous mechanism, and in a closed container by a heterogeneous mechanism involving the gas phase.