This paper proposes a novel collision post structure designed to improve the crashworthiness of subway cab cars.The structure provides two innovative features:1)a simpler connection between the post and the car roof,w...This paper proposes a novel collision post structure designed to improve the crashworthiness of subway cab cars.The structure provides two innovative features:1)a simpler connection between the post and the car roof,which gives a more reasonable load transfer path to reduce the stress concentration at the joint;and 2)a stiffness induction design that provides an ideal deformation model to protect the safe space of the cab cars.The novel collision post structure was evaluated with finite element analysis,and a prototype cab car was mechanically tested.The results demonstrate that the deformation response was stable and agreed well with the expected ideal mode.The maximum load was 874.17 kN and the responses remained well above the elastic design load of 334 kN as required by the design specification.In addition,there was no significant tearing failure during the whole test process.Therefore,the novel collision post structure proposed has met the requirements specified in new standard to improve the crashworthiness of subway cab cars.Finally,the energy absorption efficiency and light weight design highlights were also summarized and discussed.展开更多
The Al3Ti compound has potential application in the high temperature structure materials due to its low density,high strength and stiffness.The mechanical behaviors of the material under different loading rates were s...The Al3Ti compound has potential application in the high temperature structure materials due to its low density,high strength and stiffness.The mechanical behaviors of the material under different loading rates were studied using compression tests.The results indicate that Al3Ti is a typical brittle material and its compressive strength is dependent on the strain rate.Therefore,a series of rate-dependent constitutive equations are needed to describe its mechanical behaviors accurately.However,it is still short of professional research on the material model for Al3Ti.In this study,the mate rial model was developed on the basis of JH-2 constitutive equations using the experimental data.The model was then applied in simulating the impact process of Ti/Al3Ti metal-intermetallic laminate composites so as to validate the established model.Good agreement between simulation and experiment results shows the constitutive model predict the material responses under high rate and large deformation accurately.This work provides more support for the theoretical and numerical research on the intermetallic.展开更多
基金Project(2016YFB1200505-016)supported by the National Key Research and Development Program of ChinaProject(51675537)supported by the National Natural Science Foundation of ChinaProject(2018zzts161)supported by the Independent Exploration and Innovation Project of Central South University,China。
文摘This paper proposes a novel collision post structure designed to improve the crashworthiness of subway cab cars.The structure provides two innovative features:1)a simpler connection between the post and the car roof,which gives a more reasonable load transfer path to reduce the stress concentration at the joint;and 2)a stiffness induction design that provides an ideal deformation model to protect the safe space of the cab cars.The novel collision post structure was evaluated with finite element analysis,and a prototype cab car was mechanically tested.The results demonstrate that the deformation response was stable and agreed well with the expected ideal mode.The maximum load was 874.17 kN and the responses remained well above the elastic design load of 334 kN as required by the design specification.In addition,there was no significant tearing failure during the whole test process.Therefore,the novel collision post structure proposed has met the requirements specified in new standard to improve the crashworthiness of subway cab cars.Finally,the energy absorption efficiency and light weight design highlights were also summarized and discussed.
基金The authors gratefully acknowledge the financial support from National Natural Science Foundation of China(No.11602230)the Program for Innovative Research Team in Science and Technology in the University of Henan Province(No.18IRTSTHN015)Key Scientific Projects of University in Henan Province(20B430021).
文摘The Al3Ti compound has potential application in the high temperature structure materials due to its low density,high strength and stiffness.The mechanical behaviors of the material under different loading rates were studied using compression tests.The results indicate that Al3Ti is a typical brittle material and its compressive strength is dependent on the strain rate.Therefore,a series of rate-dependent constitutive equations are needed to describe its mechanical behaviors accurately.However,it is still short of professional research on the material model for Al3Ti.In this study,the mate rial model was developed on the basis of JH-2 constitutive equations using the experimental data.The model was then applied in simulating the impact process of Ti/Al3Ti metal-intermetallic laminate composites so as to validate the established model.Good agreement between simulation and experiment results shows the constitutive model predict the material responses under high rate and large deformation accurately.This work provides more support for the theoretical and numerical research on the intermetallic.