针对农业温室环境中,由于超宽带(Ultra-wideband,UWB)定位技术干扰免疫差和统计特性未知而面临定位精度不足的问题,本文提出一种基于改进自适应卡尔曼滤波(Improved adaptive Kalman filter,IAKF)算法的UWB定位技术。首先,引入异常检测...针对农业温室环境中,由于超宽带(Ultra-wideband,UWB)定位技术干扰免疫差和统计特性未知而面临定位精度不足的问题,本文提出一种基于改进自适应卡尔曼滤波(Improved adaptive Kalman filter,IAKF)算法的UWB定位技术。首先,引入异常检测机制,以识别滤波过程中的发散现象;进而,通过实时更新量测噪声协方差矩阵,抑制滤波发散,在噪声强波动情况下增强算法适应性;同时,开展3种不同环境噪声下仿真定位试验,对比分析UWB、IAKF、自适应卡尔曼滤波(Adaptive Kalman filter,AKF)及卡尔曼滤波(Kalman filter,KF)算法性能。仿真结果表明,IAKF算法展现出更强的适应性及鲁棒性。以自主开发农用履带车辆为定位载体,于农业温室环境中开展UWB定位试验。试验结果表明,温室环境中,履带车辆在视距(Line of sight,LOS)和非视距(Non line of sight,NLOS)场景下,较AKF和KF算法,IAKF算法定位精度分别提高22.2%、13.0%和20.0%、15.4%。展开更多
锂离子电池的荷电状态(state of charge,SOC)在电池均衡、优化能量使用等方面具有重要作用。针对基于模型的SOC估计方法中状态空间方程非线性导致计算量大的问题,提出了使用门控循环单元(gated recurrent units,GRU)软测量SOC,并以此为...锂离子电池的荷电状态(state of charge,SOC)在电池均衡、优化能量使用等方面具有重要作用。针对基于模型的SOC估计方法中状态空间方程非线性导致计算量大的问题,提出了使用门控循环单元(gated recurrent units,GRU)软测量SOC,并以此为观测量构建线性状态空间方程,进而使用卡尔曼滤波(Kalman filter,KF)估计SOC的方法。在随机驾驶循环工况下,所提出方法的SOC估计最大绝对误差为0.017,同时具有较快的估计速度。进一步研究发现,不同充放电倍率下电池模型的参数具有很大差异,导致基于模型的SOC估计方法在复杂情况下的估计精度较低,而所提出的GRU-KF方法因为不需要精确的电池模型,更能适应复杂的工况。展开更多
文摘针对农业温室环境中,由于超宽带(Ultra-wideband,UWB)定位技术干扰免疫差和统计特性未知而面临定位精度不足的问题,本文提出一种基于改进自适应卡尔曼滤波(Improved adaptive Kalman filter,IAKF)算法的UWB定位技术。首先,引入异常检测机制,以识别滤波过程中的发散现象;进而,通过实时更新量测噪声协方差矩阵,抑制滤波发散,在噪声强波动情况下增强算法适应性;同时,开展3种不同环境噪声下仿真定位试验,对比分析UWB、IAKF、自适应卡尔曼滤波(Adaptive Kalman filter,AKF)及卡尔曼滤波(Kalman filter,KF)算法性能。仿真结果表明,IAKF算法展现出更强的适应性及鲁棒性。以自主开发农用履带车辆为定位载体,于农业温室环境中开展UWB定位试验。试验结果表明,温室环境中,履带车辆在视距(Line of sight,LOS)和非视距(Non line of sight,NLOS)场景下,较AKF和KF算法,IAKF算法定位精度分别提高22.2%、13.0%和20.0%、15.4%。