New monazite U\|Pb geochronological data from the Everest region suggest that 20~25Ma elapsed between the initial India—Asia collision and kyanite\|sillimanite grade metamorphism. Our results indicate a two\|phase m...New monazite U\|Pb geochronological data from the Everest region suggest that 20~25Ma elapsed between the initial India—Asia collision and kyanite\|sillimanite grade metamorphism. Our results indicate a two\|phase metamorphic history, with peak Barrovian metamorphism at (32 2±0 4)Ma and a later high\|temperature, low\|pressure event (620℃, 400MPa) at (22 7±0 2)Ma.. Emplacement and crystallization of the Everest granite subsequently occurred at 20 5~21 3Ma. The monazite crystallization ages that differ by 10Ma are recorded in two structurally adjacent rocks of different lithology, which have the same post collisional p—T history.. Scanning electron microscopy reveals that the younger monazite is elaborately shaped and grew in close association with apatite at grain boundaries and triple junctions, suggesting that growth was stimulated by a change in the fluid regime. The older monazite is euhedral, is not associated with apatite, and is commonly armoured within silicate minerals. During the low\|pressure metamorphic event, the armouring protected the older monazites, and a lack of excess apatite in this sample prevented new growth. Textural relationships suggest that apatite is one of the necessary monazite\|producing reactants, and spots within monazite that are rich in Ca, Fe, Al and Si suggest that allanite acted as a preexisting rare earth element host. We propose a simplified reaction for monazite crystallization based on this evidence.展开更多
During the Sino\|American Expedition to Mt. Qomolangma in May 1997, a 41m ice core was recovered from an elevation of 6500m from the northern branch firn basin of the Far East Rongbuk Glacier in Mt. Everest. The ice c...During the Sino\|American Expedition to Mt. Qomolangma in May 1997, a 41m ice core was recovered from an elevation of 6500m from the northern branch firn basin of the Far East Rongbuk Glacier in Mt. Everest. The ice core was dated down to 1814 by counting δ 18 O peaks and referring to the variations of β activity and major ion concentrations. The average annual accumulation is 224mm (ice equivalent). Five cold periods and five warm periods have been reconstructed from the ice core for the last 200 years and the general tendency of climatic change is warming, which is agree with the temperature change in the Northern Hemisphere. Also the climatic records in Far East Rongbuk ice core has good agreement with that in the Guliya ice core. This indicates that the climatic changes are consistent in the northwestern and southern Qinghai—Tibetan Plateau, and the ranges of climatic changes are larger in southern Plateau than that in northwestern Plateau. Though the δ 18 O variations has some negatively correlation with precipitation amount for short time scale, these do not effect δ 18 O changes reflecting temperature for long time scale.展开更多
文摘New monazite U\|Pb geochronological data from the Everest region suggest that 20~25Ma elapsed between the initial India—Asia collision and kyanite\|sillimanite grade metamorphism. Our results indicate a two\|phase metamorphic history, with peak Barrovian metamorphism at (32 2±0 4)Ma and a later high\|temperature, low\|pressure event (620℃, 400MPa) at (22 7±0 2)Ma.. Emplacement and crystallization of the Everest granite subsequently occurred at 20 5~21 3Ma. The monazite crystallization ages that differ by 10Ma are recorded in two structurally adjacent rocks of different lithology, which have the same post collisional p—T history.. Scanning electron microscopy reveals that the younger monazite is elaborately shaped and grew in close association with apatite at grain boundaries and triple junctions, suggesting that growth was stimulated by a change in the fluid regime. The older monazite is euhedral, is not associated with apatite, and is commonly armoured within silicate minerals. During the low\|pressure metamorphic event, the armouring protected the older monazites, and a lack of excess apatite in this sample prevented new growth. Textural relationships suggest that apatite is one of the necessary monazite\|producing reactants, and spots within monazite that are rich in Ca, Fe, Al and Si suggest that allanite acted as a preexisting rare earth element host. We propose a simplified reaction for monazite crystallization based on this evidence.
文摘During the Sino\|American Expedition to Mt. Qomolangma in May 1997, a 41m ice core was recovered from an elevation of 6500m from the northern branch firn basin of the Far East Rongbuk Glacier in Mt. Everest. The ice core was dated down to 1814 by counting δ 18 O peaks and referring to the variations of β activity and major ion concentrations. The average annual accumulation is 224mm (ice equivalent). Five cold periods and five warm periods have been reconstructed from the ice core for the last 200 years and the general tendency of climatic change is warming, which is agree with the temperature change in the Northern Hemisphere. Also the climatic records in Far East Rongbuk ice core has good agreement with that in the Guliya ice core. This indicates that the climatic changes are consistent in the northwestern and southern Qinghai—Tibetan Plateau, and the ranges of climatic changes are larger in southern Plateau than that in northwestern Plateau. Though the δ 18 O variations has some negatively correlation with precipitation amount for short time scale, these do not effect δ 18 O changes reflecting temperature for long time scale.