为优化未来多层无线网络覆盖中视频业务的体验质量(quality of experience,QoE),在基于生物信息学的细胞吸引子选择模型上研究多维吸引子选择算法,对每个接入网视频业务的吸引力进行建模,设置参数控制吸引子吸引力度和算法收敛速度,当Qo...为优化未来多层无线网络覆盖中视频业务的体验质量(quality of experience,QoE),在基于生物信息学的细胞吸引子选择模型上研究多维吸引子选择算法,对每个接入网视频业务的吸引力进行建模,设置参数控制吸引子吸引力度和算法收敛速度,当QoE低于用户容忍阈值时,该模型会根据当前QoE值重新计算各个接入网应分得的视频流量,使当前视频QoE值重新达到用户要求。仿真结果表明,通过持续的反馈-调整闭环机制,使该方法在网络变差时优化视频业务QoE。展开更多
面向低时延、稳定传输、高用户体验质量(quality of experience,QoE)的网络实时传输需求场景,提出一种低时延智能网络数据传输调度算法。该算法由数据块排队控制策略和拥塞控制策略两部分组成。数据排队控制策略提出了综合数据块的创建...面向低时延、稳定传输、高用户体验质量(quality of experience,QoE)的网络实时传输需求场景,提出一种低时延智能网络数据传输调度算法。该算法由数据块排队控制策略和拥塞控制策略两部分组成。数据排队控制策略提出了综合数据块的创建时间和有效时限(effective time)的性价比模型,有效地解决了传输时间约束下的信息传输不均衡问题;拥塞控制策略提出了基于使用耿贝尔分布(Gumbel distribution)采样重参数化与混合经验优先级模型改进后的深度确定性策略梯度(deep deterministic policy gradient,DDPG)方法,解决了深度确定性策略梯度不适用于离散网络动作空间拥塞控制的问题,并通过学习自适应调整发送参数显著提升了网络拥塞控制质量。实验结果表明,实时传输场景下使用本文提出的排队算法能够有效提升QoE,采用改进后的DDPG进行拥塞控制能大幅降低传输时延。同样场景下,将提出的智能网络数据传输调度算法与排队策略及拥塞控制策略相结合,与传统的网络数据传输调度算法相比,能够更好地兼顾低时延和稳定传输,提供更高的数据传输质量。展开更多
文摘为优化未来多层无线网络覆盖中视频业务的体验质量(quality of experience,QoE),在基于生物信息学的细胞吸引子选择模型上研究多维吸引子选择算法,对每个接入网视频业务的吸引力进行建模,设置参数控制吸引子吸引力度和算法收敛速度,当QoE低于用户容忍阈值时,该模型会根据当前QoE值重新计算各个接入网应分得的视频流量,使当前视频QoE值重新达到用户要求。仿真结果表明,通过持续的反馈-调整闭环机制,使该方法在网络变差时优化视频业务QoE。