给出了求解一维双曲型守恒律的一种半离散三阶中心迎风格式,并利用逐维进行计算的方法将格式推广到二维守恒律。构造格式时利用了波传播的单侧局部速度,三阶重构方法的引入保证了格式的精度。时间方向的离散采用三阶TVD R unge-K u tta...给出了求解一维双曲型守恒律的一种半离散三阶中心迎风格式,并利用逐维进行计算的方法将格式推广到二维守恒律。构造格式时利用了波传播的单侧局部速度,三阶重构方法的引入保证了格式的精度。时间方向的离散采用三阶TVD R unge-K u tta方法。本文格式保持了中心差分格式简单的优点,即不需用R iem ann解算器,避免了进行特征分解过程。用该格式对一维和二维守恒律进行了大量的数值试验,结果表明本文格式是高精度、高分辨率的。展开更多
基金Supported by the National Natural Science Foundation of China under Grant(10971203,11271340)the Specialized Research Fund for the Doctoral Program of Higher Education(20094101110006)the Project of Young Backbone Teachers in University of Henan Province(2011GGJS-182)
文摘给出了求解一维双曲型守恒律的一种半离散三阶中心迎风格式,并利用逐维进行计算的方法将格式推广到二维守恒律。构造格式时利用了波传播的单侧局部速度,三阶重构方法的引入保证了格式的精度。时间方向的离散采用三阶TVD R unge-K u tta方法。本文格式保持了中心差分格式简单的优点,即不需用R iem ann解算器,避免了进行特征分解过程。用该格式对一维和二维守恒律进行了大量的数值试验,结果表明本文格式是高精度、高分辨率的。