针对传统低秩稀疏分解(low rank and sparse decomposition,LRSD)用于视频运动目标检测时检测精度较低的问题,提出了一种鲁棒非凸运动辅助LRSD(robust nonconvex motion-assisted LRSD,RNMALRSD)的运动目标检测算法。该算法首先考虑到...针对传统低秩稀疏分解(low rank and sparse decomposition,LRSD)用于视频运动目标检测时检测精度较低的问题,提出了一种鲁棒非凸运动辅助LRSD(robust nonconvex motion-assisted LRSD,RNMALRSD)的运动目标检测算法。该算法首先考虑到视频背景的低秩特性,采用非凸γ范数对秩函数进行逼近,考虑视频背景在变换域上仍然具有稀疏性,引入背景在变换域的稀疏先验。其次,引入运动辅助信息矩阵,使其融入前景的运动信息,表示每个像素属于背景的可能性,提高视频运动目标检测的准确度。然后,采用交替方向乘子法(alternating direction method of multipliers,ADMM)对提出的模型进行求解。最后,将提出的方法应用到视频运动目标检测上进行仿真实验。对实验结果的分析表明,提出的RNMALRSD方法比其他基于LRSD的运动目标检测方法具有更高的检测精度。展开更多
低秩稀疏分解(Low Rank and Sparse Decomposition,LRSD)是一种被广泛应用于计算机视觉等领域的数据表示技术,通过将已知矩阵分解为低秩成分和稀疏成分,实现视频前背景分离、图像去噪等的实际应用。分析了这一技术的研究现状,针对11种...低秩稀疏分解(Low Rank and Sparse Decomposition,LRSD)是一种被广泛应用于计算机视觉等领域的数据表示技术,通过将已知矩阵分解为低秩成分和稀疏成分,实现视频前背景分离、图像去噪等的实际应用。分析了这一技术的研究现状,针对11种经典低秩稀疏分解方法,给出了各种方法的模型及算法的优缺点。将各种算法应用于视频前背景分离和图像去噪实验中,视频前背景分离的实验结果包括使用各种算法提取的不同视频的前景效果图、视频前背景分离的F-measure值和运行时间,图像去噪实验结果展示了各种算法对不同图像的去噪效果图、PSNR值和FSIM值,从视觉效果和定量评价两个角度验证了各种算法在视频前背景分离和图像去噪这两个实际应用中的优缺点。展开更多
目的评价基于矩阵计算的组织病理学图像压缩储存算法的临床应用价值,并寻求最佳图像压缩比。方法利用主成分分析法(principal component analysis,PCA)和奇异值分解法(singular value decomposition,SVD)两种经典矩阵算法,对低、中、高...目的评价基于矩阵计算的组织病理学图像压缩储存算法的临床应用价值,并寻求最佳图像压缩比。方法利用主成分分析法(principal component analysis,PCA)和奇异值分解法(singular value decomposition,SVD)两种经典矩阵算法,对低、中、高分化的宫颈癌组织免疫组化染色图像及HE染色图像进行压缩重建,并采用峰值信噪比和结构相似度针对图像重建质量进行评价。结果PCA重建图像压缩比为10.18(保留53个主成分)时,低、中、高分化宫颈癌组织免疫组化染色图像峰值信噪比均值分别为43.84±0.43、43.27±0.25、43.71±0.49,压缩图像结构相似度分别为0.964±0.004、0.963±0.006、0.965±0.005;HE染色图像峰值信噪比均值分别为43.41±0.78、42.95±1.03、43.52±0.69,压缩图像结构相似度分别为0.953±0.010、0.949±0.015、0.960±0.007。SVD重建图像压缩比为10.00(保留128个奇异值)时,低、中、高分化宫颈癌组织免疫组化染色图像峰值信噪比均值分别为39.89±1.69、38.20±2.19、40.90±0.50,压缩图像结构相似度分别为0.949±0.006、0.938±0.011、0.955±0.004;HE染色图像峰值信噪比均值分别为40.31±0.98、39.46±1.59、40.77±1.67,压缩图像结构相似度分别为0.965±0.006、0.943±0.010、0.969±0.005。结论采用PCA和SVD可实现对组织病理学图像进行压缩储存并获得较好的图像质量,为解决医院图像存储难题提供了解决方案。展开更多
文摘针对传统低秩稀疏分解(low rank and sparse decomposition,LRSD)用于视频运动目标检测时检测精度较低的问题,提出了一种鲁棒非凸运动辅助LRSD(robust nonconvex motion-assisted LRSD,RNMALRSD)的运动目标检测算法。该算法首先考虑到视频背景的低秩特性,采用非凸γ范数对秩函数进行逼近,考虑视频背景在变换域上仍然具有稀疏性,引入背景在变换域的稀疏先验。其次,引入运动辅助信息矩阵,使其融入前景的运动信息,表示每个像素属于背景的可能性,提高视频运动目标检测的准确度。然后,采用交替方向乘子法(alternating direction method of multipliers,ADMM)对提出的模型进行求解。最后,将提出的方法应用到视频运动目标检测上进行仿真实验。对实验结果的分析表明,提出的RNMALRSD方法比其他基于LRSD的运动目标检测方法具有更高的检测精度。
文摘低秩稀疏分解(Low Rank and Sparse Decomposition,LRSD)是一种被广泛应用于计算机视觉等领域的数据表示技术,通过将已知矩阵分解为低秩成分和稀疏成分,实现视频前背景分离、图像去噪等的实际应用。分析了这一技术的研究现状,针对11种经典低秩稀疏分解方法,给出了各种方法的模型及算法的优缺点。将各种算法应用于视频前背景分离和图像去噪实验中,视频前背景分离的实验结果包括使用各种算法提取的不同视频的前景效果图、视频前背景分离的F-measure值和运行时间,图像去噪实验结果展示了各种算法对不同图像的去噪效果图、PSNR值和FSIM值,从视觉效果和定量评价两个角度验证了各种算法在视频前背景分离和图像去噪这两个实际应用中的优缺点。
文摘目的评价基于矩阵计算的组织病理学图像压缩储存算法的临床应用价值,并寻求最佳图像压缩比。方法利用主成分分析法(principal component analysis,PCA)和奇异值分解法(singular value decomposition,SVD)两种经典矩阵算法,对低、中、高分化的宫颈癌组织免疫组化染色图像及HE染色图像进行压缩重建,并采用峰值信噪比和结构相似度针对图像重建质量进行评价。结果PCA重建图像压缩比为10.18(保留53个主成分)时,低、中、高分化宫颈癌组织免疫组化染色图像峰值信噪比均值分别为43.84±0.43、43.27±0.25、43.71±0.49,压缩图像结构相似度分别为0.964±0.004、0.963±0.006、0.965±0.005;HE染色图像峰值信噪比均值分别为43.41±0.78、42.95±1.03、43.52±0.69,压缩图像结构相似度分别为0.953±0.010、0.949±0.015、0.960±0.007。SVD重建图像压缩比为10.00(保留128个奇异值)时,低、中、高分化宫颈癌组织免疫组化染色图像峰值信噪比均值分别为39.89±1.69、38.20±2.19、40.90±0.50,压缩图像结构相似度分别为0.949±0.006、0.938±0.011、0.955±0.004;HE染色图像峰值信噪比均值分别为40.31±0.98、39.46±1.59、40.77±1.67,压缩图像结构相似度分别为0.965±0.006、0.943±0.010、0.969±0.005。结论采用PCA和SVD可实现对组织病理学图像进行压缩储存并获得较好的图像质量,为解决医院图像存储难题提供了解决方案。