期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
改进U-Net模型的隧道掌子面图像语义分割研究
1
作者 陈登峰 程静 +1 位作者 赵蕾 何拓航 《防灾减灾工程学报》 北大核心 2025年第4期776-783,共8页
隧道掌子面岩体结构是判断岩土工程地质条件、制定施工和支护方案、预防塌方及涌水等事故的直观依据。将U-Net模型应用于掌子面岩体结构图像分割与识别时,下采样过程中缩小图像尺寸会导致岩体部分细节信息丢失,上采样过程中将低层特征... 隧道掌子面岩体结构是判断岩土工程地质条件、制定施工和支护方案、预防塌方及涌水等事故的直观依据。将U-Net模型应用于掌子面岩体结构图像分割与识别时,下采样过程中缩小图像尺寸会导致岩体部分细节信息丢失,上采样过程中将低层特征传递到高层的跳跃连接导致特征映射过大。因此,提出加入空洞空间卷积池化金字塔模块ASPP和卷积注意力模块CBAM的改进U-Net模型。在U-Net模型的跳跃连接过程中加ASPP,利用不同膨胀率的空洞卷积捕获不同尺度的上下文信息,融合不同感受野的信息,从而更全面的理解图像内容;U-Net模型的下采样过程中加入CBAM,使网络模型更加关注有用的特征,从而增强特征的表达能力。实验结果表明,改进的网络模型相较于原始U-Net模型分割和识别性能有显著提升,在某隧道工程掌子面岩体图像数据集上Precision达到93.04%,mIoU达到74.98%,mPA达到78.89%。 展开更多
关键词 隧道掌子面 图像语义分割 卷积注意力模块 空洞空间卷积池化金字塔模块
在线阅读 下载PDF
基于YOLOv5改进的多物体检测算法
2
作者 张小峰 戴丽娟 +3 位作者 张磊 贾志煦 章悦 赵柏淦 《江西师范大学学报(自然科学版)》 北大核心 2025年第3期303-311,共9页
随着目标检测任务由单一对象向多目标物体检测的方向发展,由于物体种类之间存在颜色、形状和体积之间的差异,所以多物体目标检测的性能不高.针对这一问题,该文基于YOLOv5算法提出一种改进的多物体目标检测算法和具有多层空洞卷积级联结... 随着目标检测任务由单一对象向多目标物体检测的方向发展,由于物体种类之间存在颜色、形状和体积之间的差异,所以多物体目标检测的性能不高.针对这一问题,该文基于YOLOv5算法提出一种改进的多物体目标检测算法和具有多层空洞卷积级联结构的CSPDarknet模型.在CSPDarkNet网络中使用多层空洞卷积级联操作,提升了整体网络模型对全局特征提取的能力和加强网络上下文信息之间的联系.在路径聚合金字塔中使用双三次上采样方法和目标区域像素点周围的相邻像素,计算得到目标区域像素,提高了特征图的分辨率和表达能力.第1组实验的检测精度为96.9%和94.8%,第2组实验的检测精度为96.2%、96.4%和98.1%,这2组实验的检测精度均优于YOLOv3和YOLOv5的检测精度. 展开更多
关键词 目标检测 YOLOv5 空洞卷积 路径聚合金字塔
在线阅读 下载PDF
基于金字塔结构的神经胶质瘤图像分割模型
3
作者 夏英茹 陆振宇 詹天明 《计算机应用与软件》 北大核心 2025年第5期203-208,246,共7页
为了提高神经胶质瘤图像分割的准确率,确保整个肿瘤的边缘信息可以更精准地获得,以U型卷积神经网络(UNet)为基础设计一种空洞卷积金字塔模型在多个尺度上捕捉图像的上下文以获得更多的特征,结合ECA(Efficient Channel Attention Network... 为了提高神经胶质瘤图像分割的准确率,确保整个肿瘤的边缘信息可以更精准地获得,以U型卷积神经网络(UNet)为基础设计一种空洞卷积金字塔模型在多个尺度上捕捉图像的上下文以获得更多的特征,结合ECA(Efficient Channel Attention Network)注意力模块让模型更加关注信息最多的通道特征,同时抑制那些不重要的通道特征。实验结果表明,FLAIR序列在分割整个肿瘤方面具有优势,而所设计的模型在FLAIR序列中的交并比(IoU)和Dice系数(DSC)分别可以达到0.93和0.86,比UNet高0.07和0.05。可以得出结论,所提模型有效获取了更多边缘信息,从而提高了神经胶质瘤图像整个肿瘤区域的分割精度。 展开更多
关键词 神经胶质瘤 图像分割 UNet 空洞卷积金字塔 ECA
在线阅读 下载PDF
基于特征重用和膨胀卷积的遥感图像舰船检测 被引量:1
4
作者 曲海成 李瑞柯 +1 位作者 王蒙 单以盟 《智能系统学报》 CSCD 北大核心 2024年第5期1298-1308,共11页
在光学遥感图像中,港口内的舰船目标通常处于密集的船只群中,并受到周围环境的干扰和遮挡,如集装箱、车辆等。为了进一步提高现有舰船目标检测算法的精度和泛化性能,提出了一种基于特征重用和膨胀卷积的遥感图像舰船检测算法。首先构建... 在光学遥感图像中,港口内的舰船目标通常处于密集的船只群中,并受到周围环境的干扰和遮挡,如集装箱、车辆等。为了进一步提高现有舰船目标检测算法的精度和泛化性能,提出了一种基于特征重用和膨胀卷积的遥感图像舰船检测算法。首先构建了基于分组卷积和拆分注意力的残差块来提取特征,同时嵌入可变形卷积提取更加符合舰船尺度变化的特征;接着,构造了多尺度感受野模块,通过并行提取多尺度特征后再进行融合来减少信息损失;最后,在原有特征金字塔的基础上构建了一条自底向上的特征重用聚合路径以提高特征表示能力。在大型遥感数据集DOTA和舰船数据集HRSC2016上进行实验,实验结果表明,所提方法能够有效缓解舰船目标漏检和误检问题,提高了遥感图像舰船目标检测的精度。 展开更多
关键词 遥感图像 舰船检测 特征重用 膨胀卷积 拆分注意力 分组卷积 特征金字塔 可变形卷积
在线阅读 下载PDF
基于短距离跳跃连接的U2-Net+医学图像语义分割 被引量:1
5
作者 王清华 孙水发 吴义熔 《现代电子技术》 北大核心 2024年第23期29-35,共7页
医学图像分割是保障发展智慧医疗系统的先决条件之一。由于原U2-Net+网络的跳跃连接只关注同分辨率所提取的特征,所以在设计时借鉴FR-UNet网络加入中间层,接收深层的上下文信息与浅层提取的高分辨率特征进行整合;并在中间层的下采样使... 医学图像分割是保障发展智慧医疗系统的先决条件之一。由于原U2-Net+网络的跳跃连接只关注同分辨率所提取的特征,所以在设计时借鉴FR-UNet网络加入中间层,接收深层的上下文信息与浅层提取的高分辨率特征进行整合;并在中间层的下采样使用非对称空洞空间卷积金字塔代替,增加网络模型训练时对边缘信息的关注,并在结构最后加入阈值增强模块,加强对细小特征边缘的识别与分割;同时加入到上采样中,帮助网络更好地提取多尺度特征,增加上下文语义关联。根据正负样本不均衡和难易不同的问题设计了组合的损失函数来监督网络优化。实验结果表明,所提算法在DRIVE、STARE+CHASE_DB1数据集上的F1分数分别提高了1.8%与4.2%,在ISIC2018数据集上的DSC分数提高了2.3%。对分割结果进行可视化后表明,该网络在样本较小的情况下可以充分提取到更加精确的边缘信息和细小的特征信息,提高语义分割的效果,所提算法在医学图像语义分割任务上有更好的表现。 展开更多
关键词 医学图像 语义分割 跳跃连接 非对称空洞空间卷积金字塔 智慧医疗 FR-UNet网络
在线阅读 下载PDF
融合多尺度特征的遮挡番茄病害图像识别研究 被引量:3
6
作者 黄晓宇 张聪 陈晓玲 《中国农机化学报》 北大核心 2024年第7期194-200,共7页
针对复杂环境下因叶片重叠遮挡以及目标较小等原因而导致番茄病害识别准确率较低的问题,提出一种多尺度级联模型(IMS-Cascade)。该模型以级联神经网络(Cascade R-CNN)为基础,在主干网络中引入融合上下文信息的可切换空洞卷积,使用复杂... 针对复杂环境下因叶片重叠遮挡以及目标较小等原因而导致番茄病害识别准确率较低的问题,提出一种多尺度级联模型(IMS-Cascade)。该模型以级联神经网络(Cascade R-CNN)为基础,在主干网络中引入融合上下文信息的可切换空洞卷积,使用复杂的多尺度卷积核提取目标特征,解决同种病害因叶片遮挡而形状差异较大的问题,并在特征融合网络中添加反馈连接模块,使模型可以进行多次的特征提取,提高浅层信息的利用率。最后在损失函数上增大准确样本的梯度,降低异常样本对模型的影响。将该模型用于Plant Village公开发表的部分番茄叶病害数据集上,mAP达到89.1%,平均准确率达到99.36%,分别比原始Cascade R-CNN模型提高2.5%和1.84%,具有更高检测精度,有利于复杂环境下的番茄病害检测。 展开更多
关键词 番茄病害检测 反馈连接 特征金字塔网络 空洞卷积 多尺度
在线阅读 下载PDF
轻量化沥青路面裂缝图像分割网络PIPNet 被引量:2
7
作者 封筠 毕健康 +1 位作者 霍一儒 李家宽 《计算机应用》 CSCD 北大核心 2024年第5期1520-1526,共7页
裂缝分割是对路面病害损坏程度评估的重要前提,为平衡深度神经网络分割的有效性与实时性,提出一种基于U-Net编码-解码结构的轻量化沥青路面裂缝图像分割网络PIPNet(Parallel dilated convolution of Inverted Pyramid Network)。编码部... 裂缝分割是对路面病害损坏程度评估的重要前提,为平衡深度神经网络分割的有效性与实时性,提出一种基于U-Net编码-解码结构的轻量化沥青路面裂缝图像分割网络PIPNet(Parallel dilated convolution of Inverted Pyramid Network)。编码部分为倒金字塔结构,提出了具有不同空洞率的多分支并行空洞卷积模块,结合深度可分离卷积和普通卷积,逐级减少并行卷积的个数,对表层、中层及底层特征提取多尺度信息并降低模型复杂度;同时借鉴GhostNet特点,设计了逆残差轻量化模块,嵌入并行双池化注意力。在GAPs384数据集上的测试结果表明,PIPNet在参数量(Params)和计算量(MFLOPs)仅为ResNet50编码近1/6的情况下,平均交并比(mIoU)提高了1.10个百分点,且较轻量化GhostNet和SegNet分别高出4.14与9.95个百分点。实验结果表明,PIPNet在降低模型复杂度的同时,有着较好的裂缝分割性能,且对不同路面裂缝图像分割适应性良好。 展开更多
关键词 沥青路面图像 裂缝分割 轻量化神经网络 倒金字塔结构 并行空洞卷积
在线阅读 下载PDF
基于多尺度特征提取的密集型小目标检测网络
8
作者 元昌安 王文姬 +10 位作者 黄豪杰 覃正优 张金勇 廖惠仙 覃晓 李小森 李永玉 符云琴 谭思婧 钱泉梅 吴琨生 《广西科学》 北大核心 2024年第5期939-953,共15页
针对现有的无锚框目标检测算法难以在密集场景下有效提取多尺度目标特征的问题,本研究提出基于多尺度特征提取的密集型小目标检测网络(Intensive small target detection network based on Multi-Scale feature Extraction, IMSE)。本... 针对现有的无锚框目标检测算法难以在密集场景下有效提取多尺度目标特征的问题,本研究提出基于多尺度特征提取的密集型小目标检测网络(Intensive small target detection network based on Multi-Scale feature Extraction, IMSE)。本研究首先提出多尺度特征增强(Multi-scale Feature Enhancement, MFE)模块,其包括窗口注意力(Window Attention, WA)模块和多尺度信息融合(Multi-scale Information Fusion, MIF)模块,通过建立全局级别的上下文联系从而增强IMSE在密集场景下的特征表达,进而能够更有效地提取检测目标的多尺度特征;其次提出可变形卷积特征金字塔网络(Deformable Convolutional Feature Pyramid Networks, DCFPN)结构,引入空洞卷积进行特征增强,从而能够有效提高IMSE检测形状不规则、分布无规律物体的能力;最后将融合后的多尺度特征分别输入检测头进行分类与边界框的回归任务。IMSE在公共数据集MS COCO、CARPK与基于实际生产场景构建的WOOD数据集上进行验证,实验结果表明,IMSE在3个数据集上的平均精度(Average Precision, AP)分别达到了49.4%、75.8%和55.0%,分别比原始FCOS方法高出1.8%、1.4%和2.1%,验证了所提出模型的有效性。 展开更多
关键词 目标检测 自注意力机制 特征金字塔 空洞卷积 可变形卷积
在线阅读 下载PDF
基于PDSSD改进型神经网络的小目标检测算法 被引量:8
9
作者 王鹏 陆振宇 +2 位作者 詹天明 戴玉亮 芦佳 《计算机应用与软件》 北大核心 2021年第1期149-156,191,共9页
SSD卷积神经网络一直对较小目标检测精度不佳。对此在SSD网络结构的基础上引入空洞卷积(Dilated Convolution),并组建空洞金字塔模块(Pyramid Dilated Convolution)和特征空洞金字塔模块(Feature Pyramid Dilated Convolution)融入SSD中... SSD卷积神经网络一直对较小目标检测精度不佳。对此在SSD网络结构的基础上引入空洞卷积(Dilated Convolution),并组建空洞金字塔模块(Pyramid Dilated Convolution)和特征空洞金字塔模块(Feature Pyramid Dilated Convolution)融入SSD中,提升了网络浅层特征层的语义信息,提高了深层特征层的感受野和特征提取能力,构建了新型网络结构Pyramid Dilated SSD(PDSSD)。实验结果表明,PDSSD在PASCAL-VOC数据集上的检测mAP(Mean Average Precision)值高达82.1%,检测精度和小目标检测能力明显高于SSD,并且网络训练速度和mAP值领先于其他主流算法。 展开更多
关键词 目标检测 PDSSD 空洞卷积 空洞金字塔 特征空洞金字塔
在线阅读 下载PDF
基于改进的DeepLabv3+图像语义分割算法研究 被引量:8
10
作者 赵为平 陈雨 +2 位作者 项松 刘远强 王超越 《系统仿真学报》 CAS CSCD 北大核心 2023年第11期2333-2344,共12页
目前主流图像语义分割网络往往存在误分割、分割不连续和模型复杂度高的问题,不能灵活高效地部署于实际场景中。针对这一现象,通过综合考虑网络的参数量、预测时间和准确度,设计出一种优化DeepLabv3+模型的图像语义分割网络。骨干网络... 目前主流图像语义分割网络往往存在误分割、分割不连续和模型复杂度高的问题,不能灵活高效地部署于实际场景中。针对这一现象,通过综合考虑网络的参数量、预测时间和准确度,设计出一种优化DeepLabv3+模型的图像语义分割网络。骨干网络改用轻量级EfficientNetv2网络提取特征,提高参数利用率;在空洞空间金字塔池化模块中使用混合条带池化模块代替全局平均池化,引入深度可分离膨胀卷积,减少参数量和提高学习多尺度信息的能力;使用注意力机制增强模型表征力,提取骨干网络多条浅层特征,丰富图像的几何细节信息。实验表明,本文算法可达到mIoU为81.19%,参数量为55.51×106,有效优化了分割精度和模型复杂度,同时也提高了模型泛化性。 展开更多
关键词 DeepLabv3+ 图像语义分割 空洞空间金字塔池化 注意力机制 深度可分离膨胀卷积
在线阅读 下载PDF
基于U-Net和特征金字塔网络的秸秆覆盖率计算方法 被引量:8
11
作者 马钦 万传峰 +2 位作者 卫建 汪玮韬 吴才聪 《农业机械学报》 EI CAS CSCD 北大核心 2023年第1期224-234,共11页
针对田间秸秆覆盖分散、秸秆形态多样,细碎秸秆识别困难,传统图像识别方法易受光照、阴影等因素干扰等问题,本文以黑龙江省齐齐哈尔市龙江县为研究地点,构建田间秸秆图像数据集;对图像进行裁剪、标注后,构建了以U-Net为基础网络的秸秆... 针对田间秸秆覆盖分散、秸秆形态多样,细碎秸秆识别困难,传统图像识别方法易受光照、阴影等因素干扰等问题,本文以黑龙江省齐齐哈尔市龙江县为研究地点,构建田间秸秆图像数据集;对图像进行裁剪、标注后,构建了以U-Net为基础网络的秸秆检测模型。将编码阶段的网络结构换成ResNet34的前4层作为特征提取器,增加模型的复杂度,增强秸秆特征的提取;为增强秸秆边缘识别,在最高语义信息层对深层特征图使用多分支非对称空洞卷积块(Multibranch asymmetric dilated convolutional block, MADC Block)提取多尺度的图像特征;为增加细碎秸秆的检测能力,在跳跃连接阶段使用密集特征图金字塔网络(Dense feature pyramid networks, DFPN)进行低层特征图和高层特征图的信息融合,利用特征图对应秸秆图像中感受野的不同,解决秸秆形态多样的问题;为避免秸秆特征图在上采样时的无效计算,解码阶段使用快速上卷积块(Fast up-convolution block, FUC Block)进行上采样,避免秸秆特征图在上采样时的无效计算。试验表明,本文算法在车载相机采集到的秸秆图像数据集上平均交并比为84.78%,相比U-Net提高2.59个百分点,该网络对于640像素×480像素的图像平均处理时间低于3 ms,符合作业检测时的时间复杂度要求,算法在一定程度上改善了阴影区域秸秆的识别问题,提高了细碎秸秆的识别能力。 展开更多
关键词 秸秆检测 计算机视觉 非对称空洞卷积 特征图金字塔网络
在线阅读 下载PDF
共享核空洞卷积与注意力引导FPN文本检测 被引量:4
12
作者 孟月波 金丹 +3 位作者 刘光辉 徐胜军 韩九强 石德旺 《光学精密工程》 EI CAS CSCD 北大核心 2021年第8期1955-1967,共13页
高分辨率图像具有特征尺度差异较大的特点,针对其造成的细粒度特征难以捕获、多尺度特征融合不佳问题,提出一种共享核空洞卷积与注意力引导(Kernel-Sharing Dilated Convolutions and Attention-guided FPN,KDA-FPN)的复杂场景文本检测... 高分辨率图像具有特征尺度差异较大的特点,针对其造成的细粒度特征难以捕获、多尺度特征融合不佳问题,提出一种共享核空洞卷积与注意力引导(Kernel-Sharing Dilated Convolutions and Attention-guided FPN,KDA-FPN)的复杂场景文本检测方法;提出最小交集(Intersection Over Minimum,IOM)后处理策略,改善因文本长宽比变化较大特性导致的掩膜重叠现象,提升检测效果。首先,模型以Resnet50为主干网络采用FPN结构捕获多尺度特征;然后,利用空洞卷积扩大特征感受野,提高特征信息的多尺度捕获能力,深层次挖掘文本细粒度特征,并通过共享核手段减少模型参数量,降低计算成本;同时,采用上下文注意模块(Context Attention Module,CxAM)捕捉多感受野间的语义信息关系,通过内容注意模块(Content Attention Module,CnAM)精确定位目标位置信息,增强多尺度融合能力,提升特征图质量;最后,将同一文本区域预测的候选框按大小排列,提出将面积最大的框与相邻文本框之间区域的交集面积占较小框面积的比值作为候选框筛选指标,抑制检测结果的掩模重叠现象,实现文本的精准检测。采用ICDAR2013、ICDAR2015、TotalText数据集进行对比实验,实验结果表明,本文模型对于水平场景文本检测的精度和召回率分别为95.3和90.4;对于倾斜文本检测的精度和召回率分别为87.1和84.2;对于任意形状文本检测的精度和召回率分别为69.6和57.3。提出的算法有效克服了图像分辨率、文本形状与长度等因素的影响,提高了检测精度,得到了更为精准的文本边界。 展开更多
关键词 文本检测 注意力结构 共享核空洞卷积 特征金字塔网络
在线阅读 下载PDF
基于局部生成对抗网络的水上低照度图像增强 被引量:4
13
作者 刘文 杨梅芳 +3 位作者 聂江天 章阳 杨和林 熊泽辉 《计算机工程》 CAS CSCD 北大核心 2021年第5期16-23,共8页
针对低照度条件下获取的水上图像亮度和对比度低以及质量差的问题,提出一种基于局部生成对抗网络的图像增强方法。以残差网络作为基本框架设计生成器,通过加入金字塔扩张卷积模块提取与学习图像深层特征和多尺度空间特征,从而减少结构... 针对低照度条件下获取的水上图像亮度和对比度低以及质量差的问题,提出一种基于局部生成对抗网络的图像增强方法。以残差网络作为基本框架设计生成器,通过加入金字塔扩张卷积模块提取与学习图像深层特征和多尺度空间特征,从而减少结构信息丢失。设计一个自编码器作为注意力网络,估计图像中的光照分布并指导图像不同亮度区域的自适应增强。构建具有判别图像局部区域能力的判别器结构,约束生成器输出增强效果更加自然的图像。实验结果表明,该方法能够有效增强水上低照度图像,场景还原和细节保留能力优于SRIE和LIME等方法。 展开更多
关键词 低照度图像增强 深度学习 生成对抗网络 金字塔扩张卷积 自适应增强
在线阅读 下载PDF
多尺度空洞卷积金字塔网络建筑物提取 被引量:6
14
作者 张春森 刘恒恒 +2 位作者 葛英伟 史书 张觅 《西安科技大学学报》 CAS 北大核心 2021年第3期490-497,574,共9页
为改善现有深度学习方法获取图像特征尺度单一、提取精度较低等问题,提出多尺度空洞卷积金字塔网络建筑物提取方法。多尺度空洞卷积金字塔网络以U-Net为基础模型,编码-解码阶段采用空洞卷积替换普通卷积扩大感受野,使得每个卷积层输出... 为改善现有深度学习方法获取图像特征尺度单一、提取精度较低等问题,提出多尺度空洞卷积金字塔网络建筑物提取方法。多尺度空洞卷积金字塔网络以U-Net为基础模型,编码-解码阶段采用空洞卷积替换普通卷积扩大感受野,使得每个卷积层输出包含比普通卷积更大范围的特征信息,以利于获取遥感影像中建筑物特征的全局信息,金字塔池化模块结合U-Net跳跃连接结构整合多尺度的特征,以获取高分辨率全局整体信息及低分辨率局部细节信息。在WHU数据集上进行提取实验,交并比达到了91.876%,相比其他语义分割网络交并比提升4.547%~10.826%,在Inria数据集上进行泛化实验,泛化精度高于其他网络。结果表明所提出的空洞卷积金字塔网络提取精度高,泛化能力强,且在不同尺度建筑物提取上具有良好的适应性。 展开更多
关键词 建筑物提取 多尺度 空洞卷积 金字塔池化
在线阅读 下载PDF
基于多尺度残差网络的对象级边缘检测算法 被引量:7
15
作者 朱威 王图强 +1 位作者 陈悦峰 何德峰 《计算机科学》 CSCD 北大核心 2020年第6期144-150,共7页
面向对象的边缘检测技术是智能视觉处理领域的关键基础技术,然而目前基于卷积神经网络的边缘检测结果存在分辨率低、噪声较多等问题。因此,文中提出了一种基于多尺度残差网络的对象级边缘检测算法。首先,设计了混合空洞卷积残差块,来替... 面向对象的边缘检测技术是智能视觉处理领域的关键基础技术,然而目前基于卷积神经网络的边缘检测结果存在分辨率低、噪声较多等问题。因此,文中提出了一种基于多尺度残差网络的对象级边缘检测算法。首先,设计了混合空洞卷积残差块,来替换原始残差网络中的普通卷积核,以放大网络的感受野;然后,设计了多尺度特征增强模块,对边缘信息进行多尺度特征提取,以放大网络的信息接受域;最后,设计了结合顶层语义特征的金字塔多尺度特征融合模块,将不同尺度下的特征信息进行融合,以输出边缘检测后的图像。为了验证所提算法的有效性,在公开数据集BSDS500上进行实验。实验结果表明,与现有算法相比,所提算法具有更好的边缘检测效果,客观指标ODS,OIS和AP分别达到了0.819,0.838和0.849,主观检测效果也更接近真实值,噪声更少。 展开更多
关键词 残差网络 空洞卷积 多尺度特征增强 金字塔特征融合结构
在线阅读 下载PDF
基于残差网络和改进特征金字塔的油田作业现场目标检测算法 被引量:5
16
作者 梁鸿 李洋 +2 位作者 邵明文 李传秀 张兆雷 《科学技术与工程》 北大核心 2020年第11期4442-4450,共9页
针对单点多盒检测器(single shot multibox detector,SSD)对小目标识别率低的问题,提出一种基于残差网络和改进特征金字塔(feature pyramid networks,FPN)的RP-SSD(residual and pyramid SSD)算法,并将其应用于油田安防领域。为了得到... 针对单点多盒检测器(single shot multibox detector,SSD)对小目标识别率低的问题,提出一种基于残差网络和改进特征金字塔(feature pyramid networks,FPN)的RP-SSD(residual and pyramid SSD)算法,并将其应用于油田安防领域。为了得到小物体更多的信息,首先在特征金字塔中增加上采样模块,并在上采样模块之后添加预测模块,之后采用空洞卷积增大Conv43的感受野。RP-SSD网络变深,针对RP-SSD在反向传播过程中存在梯度爆炸或梯度消失的问题,采用跳层连接的方式改进基础网络。RP-SSD在PASCAL VOC测试的准确率(meanaverage precision,mAP)为78.9%,比SSD提高了1.7%,其中对于目标较小的bottle类提高了8.9%。实验结果表明,RP-SSD对小目标检测的性能提高显著,同时RP-SSD在GTX 1080Ti上测试的速度为32帧/s,可见RP-SSD可以达到实时处理的要求。 展开更多
关键词 深度学习 单点多盒检测器(SSD) 小目标检测 特征金字塔 残差网络 空洞卷积 油田安防
在线阅读 下载PDF
结合全局注意力机制的实时语义分割网络 被引量:5
17
作者 李涛 高志刚 +2 位作者 管晟媛 徐久成 马媛媛 《智能系统学报》 CSCD 北大核心 2023年第2期282-292,共11页
针对轻量化网络结构从特征图提取有效语义信息不足,以及语义信息与空间细节信息融合模块设计不合理而导致分割精度降低的问题,本文提出一种结合全局注意力机制的实时语义分割网络(global attention mechanism with real time semantic s... 针对轻量化网络结构从特征图提取有效语义信息不足,以及语义信息与空间细节信息融合模块设计不合理而导致分割精度降低的问题,本文提出一种结合全局注意力机制的实时语义分割网络(global attention mechanism with real time semantic segmentation network,GaSeNet)。首先在双分支结构的语义分支中引入全局注意力机制,在通道与空间两个维度引导卷积神经网来关注与分割任务相关的语义类别,以提取更多有效语义信息;其次在空间细节分支设计混合空洞卷积块,在卷积核大小不变的情况下扩大感受野,以获取更多全局空间细节信息,弥补关键特征信息损失。然后重新设计特征融合模块,引入深度聚合金塔池化,将不同尺度的特征图深度融合,从而提高网络的语义分割性能。最后将所提出的方法在CamVid数据集和Vaihingen数据集上进行实验,通过与最新的语义分割方法对比分析可知,GaSeNet在分割精度上分别提高了4.29%、16.06%,实验结果验证了本文方法处理实时语义分割问题的有效性。 展开更多
关键词 实时语义分割 全局注意力机制 多尺度特征融合 混合空洞卷积 卷积神经网络 金字塔池化 感受野 特征提取
在线阅读 下载PDF
一种用于地震断层图像识别的SPD-UNet模型 被引量:11
18
作者 席英杰 李克文 +1 位作者 徐延辉 朱剑兵 《计算机工程》 CAS CSCD 北大核心 2021年第12期249-255,共7页
断层是控制油气田形成和分布的主要因素,断层检测和识别对于油气勘探具有重要作用。基于AttentionUNet神经网络模型,构建一种面向地震断层图像识别的SPD-UNet模型。引入空洞卷积,在保证卷积核感受野大小且不损失原始图像分辨率的情况下... 断层是控制油气田形成和分布的主要因素,断层检测和识别对于油气勘探具有重要作用。基于AttentionUNet神经网络模型,构建一种面向地震断层图像识别的SPD-UNet模型。引入空洞卷积,在保证卷积核感受野大小且不损失原始图像分辨率的情况下,增强SPD-UNet模型的断层图像特征提取能力。将金字塔结构的空洞卷积组合成SPD模块,解决空洞卷积的局部信息丢失问题,提高断层信息关联性及图像识别精度。实验结果表明,SPD-UNet模型对于地震断层图像的识别精度优于SegNet与ResUNet模型,并且识别结果与实际标注的地震断层形状及位置更接近。 展开更多
关键词 地震断层识别 图像分割 神经网络 UNet模型 空洞卷积 金字塔结构
在线阅读 下载PDF
基于多级特征和混合注意力机制的室内人群检测网络 被引量:3
19
作者 沈文祥 秦品乐 曾建潮 《计算机应用》 CSCD 北大核心 2019年第12期3496-3502,共7页
针对室内人群目标尺度和姿态多样性、人头目标易与周围物体特征混淆的问题,提出了一种基于多级特征和混合注意力机制的室内人群检测网络(MFANet)。该网络结构包括三部分,即特征融合模块、多尺度空洞卷积金字塔特征分解模块以及混合注意... 针对室内人群目标尺度和姿态多样性、人头目标易与周围物体特征混淆的问题,提出了一种基于多级特征和混合注意力机制的室内人群检测网络(MFANet)。该网络结构包括三部分,即特征融合模块、多尺度空洞卷积金字塔特征分解模块以及混合注意力模块。首先,通过将浅层特征和中间层特征信息融合,形成包含上下文信息的融合特征,用于解决浅层特征图中小目标语义信息不丰富、分类能力弱的问题;然后,利用空洞卷积增大感受野而不增加参数的特性,对融合特征进行多尺度分解,形成新的小目标检测分支,实现网络对多尺度目标的定位和检测;最后,用局部混合注意力模块来融合全局像素关联空间注意力和通道注意力,增强对关键信息贡献大的特征,来增强网络对目标和背景的区分能力。实验结果表明,所提方法在室内监控场景数据集SCUT-HEAD上达到了0.94的准确率、0.91的召回率和0.92的F1分数,在召回率、准确率和F1指标上均明显优于当前用于室内人群检测的其他算法。 展开更多
关键词 室内人群检测 特征融合 注意力机制 空洞卷积 特征金字塔
在线阅读 下载PDF
融合多特征改进型PSPNet模型应用于复杂场景下的建筑物提取 被引量:18
20
作者 武花 张新长 +4 位作者 孙颖 蔡伟男 颜军 邓剑文 张建国 《测绘通报》 CSCD 北大核心 2021年第6期21-27,共7页
针对复杂场景下高分辨率遥感影像中建筑物提取精度低的问题,本文提出了一种融合多特征改进型PSPNet模型,在PSPNet网络的基础上,加入膨胀卷积模块并融合图像的浅层特征。试验结果表明,融合多特征改进型PSPNet模型的预测结果总体精度为95.... 针对复杂场景下高分辨率遥感影像中建筑物提取精度低的问题,本文提出了一种融合多特征改进型PSPNet模型,在PSPNet网络的基础上,加入膨胀卷积模块并融合图像的浅层特征。试验结果表明,融合多特征改进型PSPNet模型的预测结果总体精度为95.90%,建筑物提取精度平均为77.77%,均高于其他模型。其在不同场景上的表现有所差异:复杂场景1的预测精度为80.35%;以城中村建筑物为主的场景2的预测精度为75%;以高层建筑物为主的场景3的预测精度为78.11%。因此本模型可有效地提升高分辨率遥感影像中复杂场景下的建筑物提取精度。 展开更多
关键词 语义分割 建筑物提取 PSPNet 膨胀卷积 金字塔池化模块
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部