The article mainly talks about the characteristic of common and fine punching and the quality of shearing edge. Although the common punching has been widely applied, the quality of shearing edge is very poor. The fine...The article mainly talks about the characteristic of common and fine punching and the quality of shearing edge. Although the common punching has been widely applied, the quality of shearing edge is very poor. The fine punching work-piece is better in quality. But it isn’t still been widely applied, because the structure of die is complicated and the manufacture of die and using pressure machine are expensive. A new fine punching processing without burr is put forward by discussing the plastic status and press stress status of the material which influence the quality of the punching work-piece in the deformation zone, it provides the plastic status of material to determine the parameter in the new processing and presents the maximum value of plastic deformation specific energy when the material reaches the plastic status. The author has analyzed the initializing clearance and instantaneous clearance of the ordinary punching. The instantaneous clearance of the ordinary punching process is instable. By studying the author brings forward a kind of punching process which initializing clearance and instantaneous clearance are stable, that is the negative clearance fine punching process. Because of using the negative clearance fine punching process, the material of sheared distorting section comes into the plastic state. The surface quality of the punching sheared edge is advanced 1.5 times than that of the ordinary punching. The recommended value of depth of the negative clearance punching has been given in this article.展开更多
Punched steel sheets (metal sheets or foils) as thi n as 0.1mm are quite useful in the field of filters and various precision instrume nts. Thus, we have to develop more accurate and speedy techniques for punching t h...Punched steel sheets (metal sheets or foils) as thi n as 0.1mm are quite useful in the field of filters and various precision instrume nts. Thus, we have to develop more accurate and speedy techniques for punching t hin sheets. The traditional punching method uses an up-down pressing motion of a punch or a die on a strip of metal. The efficiency of this method is determine d by the speed of the motion. In the case of punching a sequence of tiny holes w ith a few millimeters’ interval, the speed of feeding a strip of metal to the p unching machine cannot exceed only a couple of meters per minute. We have de veloped a new technique for punching tiny holes with a pair of rotating bodies i n order to increase the feeding speed up to 100 meters per minute. Our proposed technique is shown in Fig.1 where the female tool has a round blade and the male tool has an M-shape boss. In addition, the setting of two tools i s alternating. The interference between them cannot occur because the clearance between the front and the back edge of the male tool and the female tool in the rotating direction becomes infinite in this configuration. An appropriate cleara nce is given for the thickness of the sheet between the side edge of the male to ol and the female tool. The punching itself is done by shearing. The side edge o f the male tool does contact with the female tool, but they cannot be interferin g. Our technique has another advantage to the traditional up-down pressing mach ine where the stamped out chips are hard to be discharged. It is quite easy in o ur proposed technique. Fig.2, 3 show a sample of punched material [TPP116A,+39mm88mm,Y,PZ#]Fig.1 The configuration of the punching parts using the sequential punching system.[TPP116B,+43mm155mm,X,BP#]Fig.2 A sample of punched material using the continuous punch ing lineFig.3 A exterior picture of a piece of punched steel foil(coi l) using the continuous punching For our developed high speed punching system, it is shown for (1) the configurat ion of punching tool and the punching mechanism, (2) the influence of male shape on punched hole quality, (3) the outline of continuous punching system, (4) the relation between punching speed and accuracy of hole pitch and hole dimensi on, (5) the mechanical property of punched metal sheet and (6) capability of hig her punching.展开更多
In this study,samples obtained from 1.3343 high-speed steel punches with TiN coatings were tested.The samples were subjected to heat treatment at different cryogenic temperatures(<196℃)and durations(12,24 and 36 h...In this study,samples obtained from 1.3343 high-speed steel punches with TiN coatings were tested.The samples were subjected to heat treatment at different cryogenic temperatures(<196℃)and durations(12,24 and 36 h),followed by tempering at two different temperatures(200,500℃).For performance testing,a ball-on-disk wear test setup was utilized and a total of 6 groups of samples were examined.The effects of cryo-treatment and tempering on microstructure were revealed through microstructural analysis with scanning electron microscopy(SEM),X-ray(XRD diffraction),and Rietveld analysis.Additionally,the hardness of the punches was measured with microhardness measurements.The optimal wear resistance was observed in the 36 h deep cryo-treated and 200℃tempered samples.The characterization study indicates that by cryogenic treatment a significant portion of the retained austenite transformed into martensite and secondary carbides formed,resulting in improved wear resistance and a slight increase in hardness.展开更多
To further investigate the forming mechanism and springback characteristics of strips under multi-square punch forming (MSPF) considering partial-unloading effects, a series of concave form ing tests of strips are con...To further investigate the forming mechanism and springback characteristics of strips under multi-square punch forming (MSPF) considering partial-unloading effects, a series of concave form ing tests of strips are conducted on the MSPF machine. This paper aims to reveal the physical mecha nism of the elastic-plastic deformation in the MSPF process considering the effect of the forming ap proaches, and derive appropriate mathematical interpretations. The theoretical model is firstly estab lished to analyse the concave forming mechanism and springback characteristics of the strip, and its accuracy is then validated by experimental data. The forming history and load evolutions are depicted to explore the required forming capacity through the proposed analytical method. Besides, the paramet ric studies are carried out to discuss their effects on the springback of the strip. The results suggest that the deformation paths of the strip are influenced by the forming approach, and the springback of the strip in convex forming is larger than that in concave forming.展开更多
Punch shearing is used to form the part in the material process.Cryogenic treatment(CT)has active effect on local mechanical properties of steel,but it is still uncertain of the influence of CT on the properties of th...Punch shearing is used to form the part in the material process.Cryogenic treatment(CT)has active effect on local mechanical properties of steel,but it is still uncertain of the influence of CT on the properties of the magnesium alloy during punch shearing.In this work,the influence of AZ31 sheet treated by cryogenic on punch shearing was studied.Microstructures were observed with a ZEISS optical microscope,and mechanical properties,as well as shear properties were tested by tensile testing and punch shearing.The results show that the number of secondary phase increases and a large number of twins appear in the grains after CT.Meanwhile,the ultimate tensile strength(UTS),the ductility,and hardness of AZ31 are improved,while the yield strength(YS)decreases gradually during CT.During punch shearing,the shearing strength decreases,the rollover radius changes insignificantly,and the height of the burr on the edge of the cross section decreases.At the same time,a larger proportion of smooth zone on the cross section has been achieved.展开更多
In order to estimate deformation and mechanical properties of material accurately,elastic and plastic deformation behavior of small punch test was discussed in this paper.A two-dimensional finite element model was est...In order to estimate deformation and mechanical properties of material accurately,elastic and plastic deformation behavior of small punch test was discussed in this paper.A two-dimensional finite element model was established based upon the Gurson-Tvergaard-Needleman(GTN)equation.According to the integration of load–displacement curves with different displacements,the evolution of elastic energy was obtained.The results show that the elastic energy increases quickly in the initial region and tends to be an approximate constant during the plastic bending phase.Meanwhile,an obvious change of the slope of load–displacement curve can be found in the elastic-plastic transition region.The macroscopic deformation and fracture feature were also discussed in order to verify the deformation analysis.Finally,the yield strength,tensile strength and elongation of AISI304 were obtained based on the analysis of deformation energy and percent fracture deflection.The results have a good agreement with that of conventional tensile tests,which may provide a theoretical basis of small punch analysis.展开更多
文摘The article mainly talks about the characteristic of common and fine punching and the quality of shearing edge. Although the common punching has been widely applied, the quality of shearing edge is very poor. The fine punching work-piece is better in quality. But it isn’t still been widely applied, because the structure of die is complicated and the manufacture of die and using pressure machine are expensive. A new fine punching processing without burr is put forward by discussing the plastic status and press stress status of the material which influence the quality of the punching work-piece in the deformation zone, it provides the plastic status of material to determine the parameter in the new processing and presents the maximum value of plastic deformation specific energy when the material reaches the plastic status. The author has analyzed the initializing clearance and instantaneous clearance of the ordinary punching. The instantaneous clearance of the ordinary punching process is instable. By studying the author brings forward a kind of punching process which initializing clearance and instantaneous clearance are stable, that is the negative clearance fine punching process. Because of using the negative clearance fine punching process, the material of sheared distorting section comes into the plastic state. The surface quality of the punching sheared edge is advanced 1.5 times than that of the ordinary punching. The recommended value of depth of the negative clearance punching has been given in this article.
文摘Punched steel sheets (metal sheets or foils) as thi n as 0.1mm are quite useful in the field of filters and various precision instrume nts. Thus, we have to develop more accurate and speedy techniques for punching t hin sheets. The traditional punching method uses an up-down pressing motion of a punch or a die on a strip of metal. The efficiency of this method is determine d by the speed of the motion. In the case of punching a sequence of tiny holes w ith a few millimeters’ interval, the speed of feeding a strip of metal to the p unching machine cannot exceed only a couple of meters per minute. We have de veloped a new technique for punching tiny holes with a pair of rotating bodies i n order to increase the feeding speed up to 100 meters per minute. Our proposed technique is shown in Fig.1 where the female tool has a round blade and the male tool has an M-shape boss. In addition, the setting of two tools i s alternating. The interference between them cannot occur because the clearance between the front and the back edge of the male tool and the female tool in the rotating direction becomes infinite in this configuration. An appropriate cleara nce is given for the thickness of the sheet between the side edge of the male to ol and the female tool. The punching itself is done by shearing. The side edge o f the male tool does contact with the female tool, but they cannot be interferin g. Our technique has another advantage to the traditional up-down pressing mach ine where the stamped out chips are hard to be discharged. It is quite easy in o ur proposed technique. Fig.2, 3 show a sample of punched material [TPP116A,+39mm88mm,Y,PZ#]Fig.1 The configuration of the punching parts using the sequential punching system.[TPP116B,+43mm155mm,X,BP#]Fig.2 A sample of punched material using the continuous punch ing lineFig.3 A exterior picture of a piece of punched steel foil(coi l) using the continuous punching For our developed high speed punching system, it is shown for (1) the configurat ion of punching tool and the punching mechanism, (2) the influence of male shape on punched hole quality, (3) the outline of continuous punching system, (4) the relation between punching speed and accuracy of hole pitch and hole dimensi on, (5) the mechanical property of punched metal sheet and (6) capability of hig her punching.
基金Project supported by the Haier GroupProject supported by the Eskisehir Osmangazi University,Türkiye。
文摘In this study,samples obtained from 1.3343 high-speed steel punches with TiN coatings were tested.The samples were subjected to heat treatment at different cryogenic temperatures(<196℃)and durations(12,24 and 36 h),followed by tempering at two different temperatures(200,500℃).For performance testing,a ball-on-disk wear test setup was utilized and a total of 6 groups of samples were examined.The effects of cryo-treatment and tempering on microstructure were revealed through microstructural analysis with scanning electron microscopy(SEM),X-ray(XRD diffraction),and Rietveld analysis.Additionally,the hardness of the punches was measured with microhardness measurements.The optimal wear resistance was observed in the 36 h deep cryo-treated and 200℃tempered samples.The characterization study indicates that by cryogenic treatment a significant portion of the retained austenite transformed into martensite and secondary carbides formed,resulting in improved wear resistance and a slight increase in hardness.
文摘To further investigate the forming mechanism and springback characteristics of strips under multi-square punch forming (MSPF) considering partial-unloading effects, a series of concave form ing tests of strips are conducted on the MSPF machine. This paper aims to reveal the physical mecha nism of the elastic-plastic deformation in the MSPF process considering the effect of the forming ap proaches, and derive appropriate mathematical interpretations. The theoretical model is firstly estab lished to analyse the concave forming mechanism and springback characteristics of the strip, and its accuracy is then validated by experimental data. The forming history and load evolutions are depicted to explore the required forming capacity through the proposed analytical method. Besides, the paramet ric studies are carried out to discuss their effects on the springback of the strip. The results suggest that the deformation paths of the strip are influenced by the forming approach, and the springback of the strip in convex forming is larger than that in concave forming.
基金Projects(51275201,51311130129)supported by the National Natural Science of ChinaProject(20140204062GX)supported by the Jilin Key Scientific and Technological Project,China
文摘Punch shearing is used to form the part in the material process.Cryogenic treatment(CT)has active effect on local mechanical properties of steel,but it is still uncertain of the influence of CT on the properties of the magnesium alloy during punch shearing.In this work,the influence of AZ31 sheet treated by cryogenic on punch shearing was studied.Microstructures were observed with a ZEISS optical microscope,and mechanical properties,as well as shear properties were tested by tensile testing and punch shearing.The results show that the number of secondary phase increases and a large number of twins appear in the grains after CT.Meanwhile,the ultimate tensile strength(UTS),the ductility,and hardness of AZ31 are improved,while the yield strength(YS)decreases gradually during CT.During punch shearing,the shearing strength decreases,the rollover radius changes insignificantly,and the height of the burr on the edge of the cross section decreases.At the same time,a larger proportion of smooth zone on the cross section has been achieved.
基金Project(2012AA040105)supported by National High-technology Research and Development of China
文摘In order to estimate deformation and mechanical properties of material accurately,elastic and plastic deformation behavior of small punch test was discussed in this paper.A two-dimensional finite element model was established based upon the Gurson-Tvergaard-Needleman(GTN)equation.According to the integration of load–displacement curves with different displacements,the evolution of elastic energy was obtained.The results show that the elastic energy increases quickly in the initial region and tends to be an approximate constant during the plastic bending phase.Meanwhile,an obvious change of the slope of load–displacement curve can be found in the elastic-plastic transition region.The macroscopic deformation and fracture feature were also discussed in order to verify the deformation analysis.Finally,the yield strength,tensile strength and elongation of AISI304 were obtained based on the analysis of deformation energy and percent fracture deflection.The results have a good agreement with that of conventional tensile tests,which may provide a theoretical basis of small punch analysis.