随着可再生能源渗透水平的不断提高,现代电力系统面临着更多不可避免的不确定性,这些不确定性可能导致系统的弱阻尼振荡问题。对于可再生能源渗透率很高的电力系统,检测同步发电机之间的相干性是态势感知的关键环节。为此,文中提出了一...随着可再生能源渗透水平的不断提高,现代电力系统面临着更多不可避免的不确定性,这些不确定性可能导致系统的弱阻尼振荡问题。对于可再生能源渗透率很高的电力系统,检测同步发电机之间的相干性是态势感知的关键环节。为此,文中提出了一种基于广域测量系统(Based Area Measurement System,WAMS)的相干检测算法,该方法采用了核主成分分析(Kernel Principal Component Analysis,KPCA)和聚类(Affinity Propagation,AP)分析法可应用于可再生能源广泛渗透的电力系统。文中提出了几种轨迹相似度指标,用于确定惯性中心(Center of Inertia,COI)坐标中任意两个发电机轨迹之间的相似性;提出了一种基于KPCA方法的集成轨迹相似度指标,以解决多个指标之间的相干性问题;随后采用AP聚类分析方法检测同步发电机之间的相干性,可无需预先指定聚类的数量;利用高可再生能源发电渗透率的华南电力系统和包括张北风电场的华北电力系统的一部分进行仿真分析,结果证明了所提方法的适用性和实用性。展开更多
提出了一种基于属性区分能力和AP聚类的属性粒化方法(Attribute Granulation based on attribute discernibility and AP algorithm,AGAP)。该方法首先依据属性依赖度计算属性的区分能力;然后将所有属性作为潜在的聚类中心,使用AP算法聚...提出了一种基于属性区分能力和AP聚类的属性粒化方法(Attribute Granulation based on attribute discernibility and AP algorithm,AGAP)。该方法首先依据属性依赖度计算属性的区分能力;然后将所有属性作为潜在的聚类中心,使用AP算法聚类,得到若干个属性簇类;最后采取选用代表属性的方法得到较粗的属性粒子,从而达到属性粗粒化的要求。对高维数据的特征降维,这种算法比传统的属性约简算法大大提高了运算效率,在属性粒化精度要求不是很严格的情况下,所提算法优势明显。展开更多
文摘随着可再生能源渗透水平的不断提高,现代电力系统面临着更多不可避免的不确定性,这些不确定性可能导致系统的弱阻尼振荡问题。对于可再生能源渗透率很高的电力系统,检测同步发电机之间的相干性是态势感知的关键环节。为此,文中提出了一种基于广域测量系统(Based Area Measurement System,WAMS)的相干检测算法,该方法采用了核主成分分析(Kernel Principal Component Analysis,KPCA)和聚类(Affinity Propagation,AP)分析法可应用于可再生能源广泛渗透的电力系统。文中提出了几种轨迹相似度指标,用于确定惯性中心(Center of Inertia,COI)坐标中任意两个发电机轨迹之间的相似性;提出了一种基于KPCA方法的集成轨迹相似度指标,以解决多个指标之间的相干性问题;随后采用AP聚类分析方法检测同步发电机之间的相干性,可无需预先指定聚类的数量;利用高可再生能源发电渗透率的华南电力系统和包括张北风电场的华北电力系统的一部分进行仿真分析,结果证明了所提方法的适用性和实用性。
文摘提出了一种基于属性区分能力和AP聚类的属性粒化方法(Attribute Granulation based on attribute discernibility and AP algorithm,AGAP)。该方法首先依据属性依赖度计算属性的区分能力;然后将所有属性作为潜在的聚类中心,使用AP算法聚类,得到若干个属性簇类;最后采取选用代表属性的方法得到较粗的属性粒子,从而达到属性粗粒化的要求。对高维数据的特征降维,这种算法比传统的属性约简算法大大提高了运算效率,在属性粒化精度要求不是很严格的情况下,所提算法优势明显。