To extract and display the significant information of combat systems,this paper introduces the methodology of functional cartography into combat networks and proposes an integrated framework named“functional cartogra...To extract and display the significant information of combat systems,this paper introduces the methodology of functional cartography into combat networks and proposes an integrated framework named“functional cartography of heterogeneous combat networks based on the operational chain”(FCBOC).In this framework,a functional module detection algorithm named operational chain-based label propagation algorithm(OCLPA),which considers the cooperation and interactions among combat entities and can thus naturally tackle network heterogeneity,is proposed to identify the functional modules of the network.Then,the nodes and their modules are classified into different roles according to their properties.A case study shows that FCBOC can provide a simplified description of disorderly information of combat networks and enable us to identify their functional and structural network characteristics.The results provide useful information to help commanders make precise and accurate decisions regarding the protection,disintegration or optimization of combat networks.Three algorithms are also compared with OCLPA to show that FCBOC can most effectively find functional modules with practical meaning.展开更多
Foam concrete is a prospective material in defense engineering to protect structures due to its high energy absorption capability resulted from the long plateau stage.However,stress enhancement rather than stress miti...Foam concrete is a prospective material in defense engineering to protect structures due to its high energy absorption capability resulted from the long plateau stage.However,stress enhancement rather than stress mitigation may happen when foam concrete is used as sacrificial claddings placed in the path of an incoming blast load.To investigate this interesting phenomenon,a one-dimensional difference model for blast wave propagation in foam concrete is firstly proposed and numerically solved by improving the second-order Godunov method.The difference model and numerical algorithm are validated against experimental results including both the stress mitigation and the stress enhancement.The difference model is then used to numerically analyze the blast wave propagation and deformation of material in which the effects of blast loads,stress-strain relation and length of foam concrete are considered.In particular,the concept of minimum thickness of foam concrete to avoid stress enhancement is proposed.Finally,non-dimensional analysis on the minimum thickness is conducted and an empirical formula is proposed by curve-fitting the numerical data,which can provide a reference for the application of foam concrete in defense engineering.展开更多
This paper investigates the three-dimensional crack propagation and damage evolution process of metallic column shells under internal explosive loading.The calibration of four typical failure parameters for 40CrMnSiB ...This paper investigates the three-dimensional crack propagation and damage evolution process of metallic column shells under internal explosive loading.The calibration of four typical failure parameters for 40CrMnSiB steel was conducted through experiments and subsequently applied to simulations.The numerical simulation results employing the four failure criteria were compared with the differences and similarities observed in freeze-recovery tests and ultra-high-speed tests.This analysis addressed the critical issue of determining failure criteria for the fracture of a metal shell under internal explosive loads.Building upon this foundation,the damage parameter D_(c),linked to the cumulative crack density,was defined based on the evolution characteristics of a substantial number of cracks.The relationship between the damage parameter and crack velocity over time was established,and the influence of the internal central pressure on the damage parameter and crack velocity was investigated.Variations in the fracture modes were found under different failure criteria,with the principal strain failure criterion proving to be the most effective for simulating 3D crack propagation in a pure shear fracture mode.Through statistical analysis of the shell penetration fracture radius data,it was determined that the fracture radius remained essentially constant during the crack evolution process and could be considered a constant.The propagation velocity of axial cracks ranged between 5300 m/s and 12600 m/s,surpassing the Rayleigh wave velocity of the shell material and decreasing linearly with time.The increase in shell damage exhibited an initial rapid phase,followed by deceleration,demonstrating accelerated damage during the propagation stage of the blast wave and decelerated damage after the arrival of the rarefaction wave.This study provides an effective approach for investigating crack propagation and damage evolution.The derived crack propagation and damage evolution law serves as a valuable reference for the development of crack velocity theory and the construction of shell damage evolution modes.展开更多
The understanding of crack propagation characteristics and law of rocks during the loading process is of great significance for the exploitation and support of rock engineering.In this study,the crack propagation beha...The understanding of crack propagation characteristics and law of rocks during the loading process is of great significance for the exploitation and support of rock engineering.In this study,the crack propagation behavior of rocks in triaxial compression tests was investigated in detail.The main conclusions were as follows:1)According to the evolution characteristics of crack axial strain,the differential stress?strain curve of rocks under triaxial compressive condition can be divided into three phases which are linear elastic phase,crack propagation phase,post peak phase,respectively;2)The proposed models are applied to comparison with the test data of rocks under triaxial compressive condition and different temperatures.The theoretical data calculated by the models are in good agreement with the laboratory data,indicating that the proposed model can be applied to describing the crack propagation behavior and the nonlinear properties of rocks under triaxial compressive condition;3)The inelastic compliance and crack initiation strain in the proposed model have a decrease trend with the increase of confining pressure and temperature.Peak crack axial strain increases nonlinearly with the inelastic compliance and the increase rate increases gradually.Crack initiation strain has a linear relation with peak crack axial strain.展开更多
Human body communication(HBC) is a promising near-field communication(NFC) method emerging in recent years. But existing theoretical models of HBC are too simple to simulate the wave propagation on human body. In this...Human body communication(HBC) is a promising near-field communication(NFC) method emerging in recent years. But existing theoretical models of HBC are too simple to simulate the wave propagation on human body. In this work, in order to clarify the propagation mechanism of electromagnetic wave on human body, a surface waveguide HBC theoretical model based on stratified media cylinder is presented. A numerical model analyzed by finite element method(FEM) is used for comparing and validating the theoretical model. Finally, results of theoretical and numerical models from 80 MHz to 200 MHz agree fairly well, which means that theoretical model can characterize accurate propagation mechanism of HBC signal. Meanwhile, attenuation constants derived from two kinds of models are within the range from 1.64 to 3.37, so that HBC signal can propagate effectively on human body. The propagation mechanism derived from the theoretical model is useful to provide design information for the transmitter and the modeling of the propagation channel in HBC.展开更多
The mechanism of cracks propagation and cracks coalescence due to compressive loading of the brittle substances containing pre-existing cracks (flaws) was modeled experimentally using specially made rock-like specim...The mechanism of cracks propagation and cracks coalescence due to compressive loading of the brittle substances containing pre-existing cracks (flaws) was modeled experimentally using specially made rock-like specimens from Portland Pozzolana Cement (PPC). The breakage process of the specimens was studied by inserting single and double flaws with different inclination angles at the center and applying uniaxial compressive stress at both ends of the specimen. The first crack was oriented at 50° from the horizontal direction and kept constant throughout the analysis while the orientation of the second crack was changed. It is experimentally observed that the wing cracks are produced at the first stage of loading and start their propagation toward the direction of uniaxial compressive loading. The secondary cracks may also be produced in form of quasi-coplanar and/or oblique cracks in a stable manner. The secondary cracks may eventually continue their propagation in the direction of maximum principle stress. These experimental works were also simulated numerically by a modified higher order displacement discontinuity method and the cracks propagation and cracks coalescence were studied based on Mode I and Mode II stress intensity factors (SIFs). It is concluded that the wing cracks initiation stresses for the specimens change from 11.3 to 14.1 MPain the case of numerical simulations and from 7.3 to 13.8 MPa in the case of experimental works. It is observed that cracks coalescence stresses change from 21.8 to 25.3 MPa and from 19.5 to 21.8 MPa in the numerical and experimental analyses, respectively. Comparing some of the numerical and experimental results with those recently cited in the literature validates the results obtained by the proposed study. Finally, a numerical simulation was accomplished to study the effect of confining pressure on the crack propagation process, showing that the SIFs increase and the crack initiation angles change in this case.展开更多
In order to study the instability propagation characteristics of the liquid kerosene rotating detonation wave(RDW),a series of experimental tests were carried out on the rotating detonation combustor(RDC)with air-heat...In order to study the instability propagation characteristics of the liquid kerosene rotating detonation wave(RDW),a series of experimental tests were carried out on the rotating detonation combustor(RDC)with air-heater.The fuel and oxidizer are room-temperature liquid kerosene and preheated oxygenenriched air,respectively.The experimental tests keep the equivalence ratio of 0.81 and the oxygen mass fraction of 35%unchanged,and the total mass flow rate is maintained at about 1000 g/s,changing the total temperature of the oxygen-enriched air from 620 K to 860 K.Three different types of instability were observed in the experiments:temporal and spatial instability,mode transition and re-initiation.The interaction between RDW and supply plenum may be the main reason for the fluctuations of detonation wave velocity and pressure peaks with time.Moreover,the inconsistent mixing of fuel and oxidizer at different circumferential positions is related to RDW oscillate spatially.The phenomenon of single-double-single wave transition is analyzed.During the transition,the initial RDW weakens until disappears,and the compression wave strengthens until it becomes a new RDWand propagates steadily.The increased deflagration between the detonation products and the fresh gas layer caused by excessively high temperature is one of the reasons for the RDC quenching and re-initiation.展开更多
Tackling the problems of underground water storage in collieries in arid regions requires knowledge of the effect of water intrusion and loading rate on the mechanical properties of and crack development in coal–rock...Tackling the problems of underground water storage in collieries in arid regions requires knowledge of the effect of water intrusion and loading rate on the mechanical properties of and crack development in coal–rock combinations. Fifty-four coal–rock combinations were prepared and split equally into groups containing different moisture contents(dry, natural moisture and saturated) to conduct acoustic emission testing under uniaxial compression with loading rates ranging from 0.1 mm/min to 0.6 mm/min. The results show that the peak stress and strength-softening modulus, elastic modulus, strain-softening modulus, and post-peak modulus partly decrease with increasing moisture content and loading rate. In contrast, peak strain increases with increasing moisture content and fluctuates with rising loading rate. More significantly, the relationship between stiffness and stress, combined with accumulated counts of acoustic emission, can be used to precisely predict all phases of crack propagation. This is helpful in studying the impact of moisture content and loading rate on crack propagation and accurately calculating mechanical properties. We also determined that the stress thresholds of crack closure, crack initiation, and crack damage do not vary with changes of moisture content and loading rate, constituting 15.22%, 32.20%, and 80.98% of peak stress, respectively. These outcomes assist in developing approaches to water storage in coal mines, determining the necessary width of waterproof coal–rock pillars, and methods of supporting water-enriched roadways, while also advances understanding the mechanical properties of coal–rock combinations and laws of crack propagation.展开更多
Frac-packing technology has been introduced to improve the development effect of weakly consolidated sandstone.It has double effects on increasing production and sand control.However,determining operation parameters o...Frac-packing technology has been introduced to improve the development effect of weakly consolidated sandstone.It has double effects on increasing production and sand control.However,determining operation parameters of frac-packing is the key factor due to the particularity of weakly consolidated sandstone.In order to study the mechanisms of hydraulic fracture propagation and reveal the effect of fracturing parameters on fracture morphology in weakly consolidated sandstone,finite element numerical model of fluid-solid coupling is established to carry out numerical simulation to analyze influences of mechanical characteristics,formation permeability,fracturing fluid injection rate and viscosity on fracture propagation.The result shows that lower elastic modulus is favorable for inducing short and wide fractures and controls the fracture length while Poisson ratio has almost no effect.Large injection rate and high viscosity of fracturing fluid are advantageous to fracture initiation and propagation.Suitable fractures are produced when the injection rate is approximate to3–4m3/min and fluid viscosity is over100mPa?s.The leak-off of fracturing fluid to formation is rising with the increase of formation permeability,which is adverse to fracture propagation.The work provides theoretical reference to determine the construction parameters for the frac-packing design in weakly consolidated reservoirs.展开更多
Based on the model which couples the projectile and gun barrel during an interior ballistic cycle,the uncertainty propagation analysis of the model is presented caused by the uncertainty of the input parameters.The Bo...Based on the model which couples the projectile and gun barrel during an interior ballistic cycle,the uncertainty propagation analysis of the model is presented caused by the uncertainty of the input parameters.The Bootstrap method is employed to calculate the statistical moments(i.e.the mean,variance,skewness coefficient and kurtosis coefficient)of the parameters of the projectile.Meanwhile,the maximum entropy method is used to estimate the probability density function(PDF)and the cumulative density function(CDF),the interval of the parameters of the projectile are also given.Moreover,the results obtained are compared to the results calculated by Monte Carlo(MC)method to verify the effectiveness of the presented method.Finally,the rule and the uncertainty propagation model of the projectile-barrel coupling system are given with the variation of the uncertainties of the input parameters.展开更多
Excessive vibration and noise radiation of the track structure can be caused by the operation of high speed trains.Though the track structure is characterized by obvious periodic properties and band gaps,the bandwidth...Excessive vibration and noise radiation of the track structure can be caused by the operation of high speed trains.Though the track structure is characterized by obvious periodic properties and band gaps,the bandwidth is narrow and the elastic wave attenuation capability within the band gap is weak.In order to effectively control the vibration and noise of track structure,the local resonance mechanism is introduced to broaden the band gap and realize wave propagation control.The locally resonant units are attached periodically on the rail,forming a new locally resonant phononic crystal structure.Then the tuning of the elastic wave band gaps of track structure is discussed,and the formation mechanism of the band gap is explicated.The research results show that a new wide and adjustable locally resonant band gap is formed after the resonant units are introduced.The phenomenon of coupling and transition can be observed between the new locally resonant band gap and the original band gap of the periodic track structure with the band gap width reaching the maximum at the coupling position.The broader band gap can be applied for vibration and noise reduction in high speed railway track structure.展开更多
Due to the pressure gain combustion characteristics,the rotating detonation combustor(RDC)can enhance thermodynamic cycle efficiency.Therefore,the performance of gas-turbine engine can be further improved with this co...Due to the pressure gain combustion characteristics,the rotating detonation combustor(RDC)can enhance thermodynamic cycle efficiency.Therefore,the performance of gas-turbine engine can be further improved with this combustion technology.In the present study,the RDC operation performance with a turbine guide vane(TGV)is experimentally investigated.Hydrogen and air are used as propellants while hydrogen and air mass flow rate are about 16.1 g/s and 500 g/s and the equivalence ratio is about 1.0.A pre-detonator is used to ignite the mixture.High-frequency dynamic pressure transducers and silicon pressure sensors are employed to measure pressure oscillations and static pressure in the combustion chamber.The experimental results show that the steady propagation of rotating detonation wave(RDW)is observed in the combustion chamber and the mean propagation velocity is above 1650 m/s,reaching over 84%of theoretical Chapman-Jouguet detonation velocity.Clockwise and counterclockwise propagation directions of RDW are obtained.For clockwise propagation direction,the static pressure is about 15%higher in the combustor compared with counterclockwise propagation direction,but the RDW dominant frequency is lower.When the oblique shock wave propagates across the TGV,the pressure oscillations reduces significantly.In addition,as the detonation products flow through the TGV,the static pressure drops up to 32%and 43%for clockwise and counterclockwise propagation process respectively.展开更多
To fight against malicious codes of P2P networks, it is necessary to study the malicious code propagation model of P2P networks in depth. The epidemic of malicious code threatening P2P systems can be divided into the ...To fight against malicious codes of P2P networks, it is necessary to study the malicious code propagation model of P2P networks in depth. The epidemic of malicious code threatening P2P systems can be divided into the active and passive propagation models and a new passive propagation model of malicious code is proposed, which differentiates peers into 4 kinds of state and fits better for actual P2P networks. From the propagation model of malicious code, it is easy to find that quickly making peers get their patched and upgraded anti-virus system is the key way of immunization and damage control. To distribute patches and immune modules efficiently, a new exponential tree plus (ET+) and vaccine distribution algorithm based on ET+ are also proposed. The performance analysis and test results show that the vaccine distribution algorithm based on ET+ is robust, efficient and much more suitable for P2P networks.展开更多
A wave equation of rock under axial static stress is established using the equivalent medium method by modifying the Kelvin-Voigt model.The analytical formulas of longitudinal velocity,space and time attenuation coeff...A wave equation of rock under axial static stress is established using the equivalent medium method by modifying the Kelvin-Voigt model.The analytical formulas of longitudinal velocity,space and time attenuation coefficients and response frequency are obtained by solving the equation using the harmonic method.A series of experiments on stress wave propagation through rock under different axial static stresses have been conducted.The proposed models of stress wave propagation are then verified by comparing experimental results with theoretical solutions.Based on the verified theoretical models,the influences of axial static stress on longitudinal velocity,space and time attenuation coefficients and response frequency are investigated by detailed parametric studies.The results show that the proposed theoretical models can be used to effectively investigate the effects of axial static stress on the stress wave propagation in rock.The axial static stress influences stress wave propagation characteristics of porous rock by varying the level of rock porosity and damage.Moreover,the initial porosity,initial elastic modulus of the rock voids and skeleton,viscous coefficient and vibration frequency have significant effects on the P-wave velocity,attenuation characteristics and response frequency of the stress wave in porous rock under axial static stress.展开更多
本文以黄河利津站和浙江省白溪水库的月径流水文序列为例,在自相关分析的基础上,建立自回归autoregression模型,并参照其结构建立了相应的resilient back propagation神经网络预报模型.比较结果显示:(1)resilient back propagation模型...本文以黄河利津站和浙江省白溪水库的月径流水文序列为例,在自相关分析的基础上,建立自回归autoregression模型,并参照其结构建立了相应的resilient back propagation神经网络预报模型.比较结果显示:(1)resilient back propagation模型的模拟预报结果与序列的自相关性有密切关系;(2)当序列有较好的自相关性时,可参照autoregression模型建立相应的resilient back propagation模型;(3)与传统autoregression模型相比,resilient back propagation模型能取得更高的预报精度;且随着预报步长增加,resilient back propagation模型的优势更加明显.展开更多
In this study, kerosene fuel-rich gas produced by the combustion in the gas generator was used as the fuel and oxygen-rich air was used as the oxidant to investigate the propagation characteristics of the rotating det...In this study, kerosene fuel-rich gas produced by the combustion in the gas generator was used as the fuel and oxygen-rich air was used as the oxidant to investigate the propagation characteristics of the rotating detonation wave (RDW). The initiation of the kerosene fuel-rich gas and propagation process of the RDW were analyzed. The influences of the oxygen content in the oxidizer, kerosene mass flow rate of the gas generator, and temperature of the kerosene fuel-rich gas on the propagation process of the RDW were studied. The experimental results revealed that the propagation velocity of the RDW could be improved by increasing the three parameters mentioned above with the kerosene mass flow rate as the strongest factor. The minimum oxygen content that could successfully initiate and maintain the stable propagation of the RDW was 32%, achieving the RDW velocity of 1141.9 m/s. The RDW mainly propagated as two-counter rotating waves and a single wave when the equivalent ratios were 0.62–0.79 and 0.85–0.87, respectively. The highest RDW velocity of 1637.2 m/s was obtained when the kerosene mass flow rate, oxygen content, and equivalent ratio were 74.6 g/s, 44%, and 0.87, respectively.展开更多
In this research,a detailed multi-physics study has been carried out by numerically simulating a solid fractured gun barrel for 20 thermo-mechanical cycles.The numerical model is based on thermal effects,mechanical st...In this research,a detailed multi-physics study has been carried out by numerically simulating a solid fractured gun barrel for 20 thermo-mechanical cycles.The numerical model is based on thermal effects,mechanical stress fields and fatigue crack mechanics.Elastic-plastic material data of modified AISI 4340 at temperatures ranging from 25 to 1200℃and at strain rates of 4,16,32 and 48 s^(-1) was acquired from high-temperature compression tests.This was used as material property data in the simulation model.The boundary conditions applied are kept similar to the working gun barrel during continuous firing.A methodology has been provided to define thermo-mechanically active surface-to-surface type interface between the crack faces for a better approximation of stresses at the crack tip.Comparison of results from non-autofrettaged and autofrettaged simulation models provide useful information about the evolution of strains and stresses in the barrel at different points under combined thermo-mechanical loading cycles in both cases.The effect of thermal fatigue under already induced compressive yield due to autofrettage and the progressive degradation of the accumulated stresses due to thermo-mechanical cyclic loads on the internal surface of the gun barrel(mimicking the continuous firing scenario)has been analyzed.Comparison between energy release rate at tips of varying crack lengths due to cyclic thermo-mechanical loading in the non-autofrettaged and autofrettaged gun has been carried out.展开更多
文摘To extract and display the significant information of combat systems,this paper introduces the methodology of functional cartography into combat networks and proposes an integrated framework named“functional cartography of heterogeneous combat networks based on the operational chain”(FCBOC).In this framework,a functional module detection algorithm named operational chain-based label propagation algorithm(OCLPA),which considers the cooperation and interactions among combat entities and can thus naturally tackle network heterogeneity,is proposed to identify the functional modules of the network.Then,the nodes and their modules are classified into different roles according to their properties.A case study shows that FCBOC can provide a simplified description of disorderly information of combat networks and enable us to identify their functional and structural network characteristics.The results provide useful information to help commanders make precise and accurate decisions regarding the protection,disintegration or optimization of combat networks.Three algorithms are also compared with OCLPA to show that FCBOC can most effectively find functional modules with practical meaning.
基金supported by the National Natural Science Foundation of China (Grant No.52178515)。
文摘Foam concrete is a prospective material in defense engineering to protect structures due to its high energy absorption capability resulted from the long plateau stage.However,stress enhancement rather than stress mitigation may happen when foam concrete is used as sacrificial claddings placed in the path of an incoming blast load.To investigate this interesting phenomenon,a one-dimensional difference model for blast wave propagation in foam concrete is firstly proposed and numerically solved by improving the second-order Godunov method.The difference model and numerical algorithm are validated against experimental results including both the stress mitigation and the stress enhancement.The difference model is then used to numerically analyze the blast wave propagation and deformation of material in which the effects of blast loads,stress-strain relation and length of foam concrete are considered.In particular,the concept of minimum thickness of foam concrete to avoid stress enhancement is proposed.Finally,non-dimensional analysis on the minimum thickness is conducted and an empirical formula is proposed by curve-fitting the numerical data,which can provide a reference for the application of foam concrete in defense engineering.
基金supported by the National Natural Science Foundation of China (Grant No.12302437)Natural Science Foundation of Jiangsu Province (BK20230939)China Postdoctoral Science Foundation (2021M701710)。
文摘This paper investigates the three-dimensional crack propagation and damage evolution process of metallic column shells under internal explosive loading.The calibration of four typical failure parameters for 40CrMnSiB steel was conducted through experiments and subsequently applied to simulations.The numerical simulation results employing the four failure criteria were compared with the differences and similarities observed in freeze-recovery tests and ultra-high-speed tests.This analysis addressed the critical issue of determining failure criteria for the fracture of a metal shell under internal explosive loads.Building upon this foundation,the damage parameter D_(c),linked to the cumulative crack density,was defined based on the evolution characteristics of a substantial number of cracks.The relationship between the damage parameter and crack velocity over time was established,and the influence of the internal central pressure on the damage parameter and crack velocity was investigated.Variations in the fracture modes were found under different failure criteria,with the principal strain failure criterion proving to be the most effective for simulating 3D crack propagation in a pure shear fracture mode.Through statistical analysis of the shell penetration fracture radius data,it was determined that the fracture radius remained essentially constant during the crack evolution process and could be considered a constant.The propagation velocity of axial cracks ranged between 5300 m/s and 12600 m/s,surpassing the Rayleigh wave velocity of the shell material and decreasing linearly with time.The increase in shell damage exhibited an initial rapid phase,followed by deceleration,demonstrating accelerated damage during the propagation stage of the blast wave and decelerated damage after the arrival of the rarefaction wave.This study provides an effective approach for investigating crack propagation and damage evolution.The derived crack propagation and damage evolution law serves as a valuable reference for the development of crack velocity theory and the construction of shell damage evolution modes.
基金Project(51622404)supported by Outstanding Youth Science Foundation of the National Natural Science Foundation of ChinaProjects(51374215,11572343,51904092)supported by the National Natural Science Foundation of China+2 种基金Project(2016YFC0801404)supported by the State Key Research Development Program of ChinaProject(KCF201803)supported by Henan Key Laboratory for Green and Efficient Mining&Comprehensive Utilization of Mineral Resources,Henan Polytechnic University,ChinaProject supported by Beijing Excellent Young Scientists,China
文摘The understanding of crack propagation characteristics and law of rocks during the loading process is of great significance for the exploitation and support of rock engineering.In this study,the crack propagation behavior of rocks in triaxial compression tests was investigated in detail.The main conclusions were as follows:1)According to the evolution characteristics of crack axial strain,the differential stress?strain curve of rocks under triaxial compressive condition can be divided into three phases which are linear elastic phase,crack propagation phase,post peak phase,respectively;2)The proposed models are applied to comparison with the test data of rocks under triaxial compressive condition and different temperatures.The theoretical data calculated by the models are in good agreement with the laboratory data,indicating that the proposed model can be applied to describing the crack propagation behavior and the nonlinear properties of rocks under triaxial compressive condition;3)The inelastic compliance and crack initiation strain in the proposed model have a decrease trend with the increase of confining pressure and temperature.Peak crack axial strain increases nonlinearly with the inelastic compliance and the increase rate increases gradually.Crack initiation strain has a linear relation with peak crack axial strain.
基金Project(2009ZX01031-001-007-2)supported by the National Science and Technology Major Project,China
文摘Human body communication(HBC) is a promising near-field communication(NFC) method emerging in recent years. But existing theoretical models of HBC are too simple to simulate the wave propagation on human body. In this work, in order to clarify the propagation mechanism of electromagnetic wave on human body, a surface waveguide HBC theoretical model based on stratified media cylinder is presented. A numerical model analyzed by finite element method(FEM) is used for comparing and validating the theoretical model. Finally, results of theoretical and numerical models from 80 MHz to 200 MHz agree fairly well, which means that theoretical model can characterize accurate propagation mechanism of HBC signal. Meanwhile, attenuation constants derived from two kinds of models are within the range from 1.64 to 3.37, so that HBC signal can propagate effectively on human body. The propagation mechanism derived from the theoretical model is useful to provide design information for the transmitter and the modeling of the propagation channel in HBC.
文摘The mechanism of cracks propagation and cracks coalescence due to compressive loading of the brittle substances containing pre-existing cracks (flaws) was modeled experimentally using specially made rock-like specimens from Portland Pozzolana Cement (PPC). The breakage process of the specimens was studied by inserting single and double flaws with different inclination angles at the center and applying uniaxial compressive stress at both ends of the specimen. The first crack was oriented at 50° from the horizontal direction and kept constant throughout the analysis while the orientation of the second crack was changed. It is experimentally observed that the wing cracks are produced at the first stage of loading and start their propagation toward the direction of uniaxial compressive loading. The secondary cracks may also be produced in form of quasi-coplanar and/or oblique cracks in a stable manner. The secondary cracks may eventually continue their propagation in the direction of maximum principle stress. These experimental works were also simulated numerically by a modified higher order displacement discontinuity method and the cracks propagation and cracks coalescence were studied based on Mode I and Mode II stress intensity factors (SIFs). It is concluded that the wing cracks initiation stresses for the specimens change from 11.3 to 14.1 MPain the case of numerical simulations and from 7.3 to 13.8 MPa in the case of experimental works. It is observed that cracks coalescence stresses change from 21.8 to 25.3 MPa and from 19.5 to 21.8 MPa in the numerical and experimental analyses, respectively. Comparing some of the numerical and experimental results with those recently cited in the literature validates the results obtained by the proposed study. Finally, a numerical simulation was accomplished to study the effect of confining pressure on the crack propagation process, showing that the SIFs increase and the crack initiation angles change in this case.
基金supported by the National Natural Science Foundation of China(Grant No.11802137,11702143 and 11802039)the Fundamental Research Funds for the Central Universities(No.30919011259).
文摘In order to study the instability propagation characteristics of the liquid kerosene rotating detonation wave(RDW),a series of experimental tests were carried out on the rotating detonation combustor(RDC)with air-heater.The fuel and oxidizer are room-temperature liquid kerosene and preheated oxygenenriched air,respectively.The experimental tests keep the equivalence ratio of 0.81 and the oxygen mass fraction of 35%unchanged,and the total mass flow rate is maintained at about 1000 g/s,changing the total temperature of the oxygen-enriched air from 620 K to 860 K.Three different types of instability were observed in the experiments:temporal and spatial instability,mode transition and re-initiation.The interaction between RDW and supply plenum may be the main reason for the fluctuations of detonation wave velocity and pressure peaks with time.Moreover,the inconsistent mixing of fuel and oxidizer at different circumferential positions is related to RDW oscillate spatially.The phenomenon of single-double-single wave transition is analyzed.During the transition,the initial RDW weakens until disappears,and the compression wave strengthens until it becomes a new RDWand propagates steadily.The increased deflagration between the detonation products and the fresh gas layer caused by excessively high temperature is one of the reasons for the RDC quenching and re-initiation.
基金Project(2014QNB31)supported by the Fundamental Research Funds for the Central Universities,ChinaProjects(51674248)supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China
文摘Tackling the problems of underground water storage in collieries in arid regions requires knowledge of the effect of water intrusion and loading rate on the mechanical properties of and crack development in coal–rock combinations. Fifty-four coal–rock combinations were prepared and split equally into groups containing different moisture contents(dry, natural moisture and saturated) to conduct acoustic emission testing under uniaxial compression with loading rates ranging from 0.1 mm/min to 0.6 mm/min. The results show that the peak stress and strength-softening modulus, elastic modulus, strain-softening modulus, and post-peak modulus partly decrease with increasing moisture content and loading rate. In contrast, peak strain increases with increasing moisture content and fluctuates with rising loading rate. More significantly, the relationship between stiffness and stress, combined with accumulated counts of acoustic emission, can be used to precisely predict all phases of crack propagation. This is helpful in studying the impact of moisture content and loading rate on crack propagation and accurately calculating mechanical properties. We also determined that the stress thresholds of crack closure, crack initiation, and crack damage do not vary with changes of moisture content and loading rate, constituting 15.22%, 32.20%, and 80.98% of peak stress, respectively. These outcomes assist in developing approaches to water storage in coal mines, determining the necessary width of waterproof coal–rock pillars, and methods of supporting water-enriched roadways, while also advances understanding the mechanical properties of coal–rock combinations and laws of crack propagation.
基金Project(2016ZX05058-002-006)supported by National Science and Technology Major Projects of ChinaProject(2018CXTD346)supported by Innovative Research Team Program of Natural Science Foundation of Hainan Province,China
文摘Frac-packing technology has been introduced to improve the development effect of weakly consolidated sandstone.It has double effects on increasing production and sand control.However,determining operation parameters of frac-packing is the key factor due to the particularity of weakly consolidated sandstone.In order to study the mechanisms of hydraulic fracture propagation and reveal the effect of fracturing parameters on fracture morphology in weakly consolidated sandstone,finite element numerical model of fluid-solid coupling is established to carry out numerical simulation to analyze influences of mechanical characteristics,formation permeability,fracturing fluid injection rate and viscosity on fracture propagation.The result shows that lower elastic modulus is favorable for inducing short and wide fractures and controls the fracture length while Poisson ratio has almost no effect.Large injection rate and high viscosity of fracturing fluid are advantageous to fracture initiation and propagation.Suitable fractures are produced when the injection rate is approximate to3–4m3/min and fluid viscosity is over100mPa?s.The leak-off of fracturing fluid to formation is rising with the increase of formation permeability,which is adverse to fracture propagation.The work provides theoretical reference to determine the construction parameters for the frac-packing design in weakly consolidated reservoirs.
文摘Based on the model which couples the projectile and gun barrel during an interior ballistic cycle,the uncertainty propagation analysis of the model is presented caused by the uncertainty of the input parameters.The Bootstrap method is employed to calculate the statistical moments(i.e.the mean,variance,skewness coefficient and kurtosis coefficient)of the parameters of the projectile.Meanwhile,the maximum entropy method is used to estimate the probability density function(PDF)and the cumulative density function(CDF),the interval of the parameters of the projectile are also given.Moreover,the results obtained are compared to the results calculated by Monte Carlo(MC)method to verify the effectiveness of the presented method.Finally,the rule and the uncertainty propagation model of the projectile-barrel coupling system are given with the variation of the uncertainties of the input parameters.
基金Project(2016YFE0205200)supported by the National Key Research and Development Program of ChinaProjects(51425804,51508479)supported by the National Natural Science Foundation of China+1 种基金Project(2016310019)supported by the Doctorial Innovation Fund of Southwest Jiaotong University,ChinaProject(2017GZ0373)supported by the Research Fund for Key Research and Development Projects in Sichuan Province,China
文摘Excessive vibration and noise radiation of the track structure can be caused by the operation of high speed trains.Though the track structure is characterized by obvious periodic properties and band gaps,the bandwidth is narrow and the elastic wave attenuation capability within the band gap is weak.In order to effectively control the vibration and noise of track structure,the local resonance mechanism is introduced to broaden the band gap and realize wave propagation control.The locally resonant units are attached periodically on the rail,forming a new locally resonant phononic crystal structure.Then the tuning of the elastic wave band gaps of track structure is discussed,and the formation mechanism of the band gap is explicated.The research results show that a new wide and adjustable locally resonant band gap is formed after the resonant units are introduced.The phenomenon of coupling and transition can be observed between the new locally resonant band gap and the original band gap of the periodic track structure with the band gap width reaching the maximum at the coupling position.The broader band gap can be applied for vibration and noise reduction in high speed railway track structure.
基金the National Natural Science Foundation of China(No.11702143 and 11802137)the Fundamental Research Funds for the Central Universities(No.30918011343 and 30919011259).
文摘Due to the pressure gain combustion characteristics,the rotating detonation combustor(RDC)can enhance thermodynamic cycle efficiency.Therefore,the performance of gas-turbine engine can be further improved with this combustion technology.In the present study,the RDC operation performance with a turbine guide vane(TGV)is experimentally investigated.Hydrogen and air are used as propellants while hydrogen and air mass flow rate are about 16.1 g/s and 500 g/s and the equivalence ratio is about 1.0.A pre-detonator is used to ignite the mixture.High-frequency dynamic pressure transducers and silicon pressure sensors are employed to measure pressure oscillations and static pressure in the combustion chamber.The experimental results show that the steady propagation of rotating detonation wave(RDW)is observed in the combustion chamber and the mean propagation velocity is above 1650 m/s,reaching over 84%of theoretical Chapman-Jouguet detonation velocity.Clockwise and counterclockwise propagation directions of RDW are obtained.For clockwise propagation direction,the static pressure is about 15%higher in the combustor compared with counterclockwise propagation direction,but the RDW dominant frequency is lower.When the oblique shock wave propagates across the TGV,the pressure oscillations reduces significantly.In addition,as the detonation products flow through the TGV,the static pressure drops up to 32%and 43%for clockwise and counterclockwise propagation process respectively.
基金supported by the National Natural Science Foundation of China (60573141,60773041)National High Technology Research and Development Program of China (863 Program) (2006AA01Z439+12 种基金2007AA01Z404 2007AA01Z478)the Natural Science Foundation of Jiangsu Province (BK2008451)Science & Technology Project of Jiangsu Province (BE2009158)the Natural Science Foundation of Higher Education Institutions of Jiangsu Province (09KJB520010 09KJB520009)the Research Fund for the Doctoral Program of Higher Education(2009 3223120001)the Sepcialized Research Fund of Ministry of Education (2009117)High Technology Research Program of Nanjing(2007RZ127)Foundation of National Laboratory for Modern Communications (9140C1105040805)Postdoctoral Foundation of Jiangsu Province (0801019C)Science & Technology Innovation Fundfor Higher Education Institutions of Jiangsu Province (CX08B-085ZCX08B-086Z)
文摘To fight against malicious codes of P2P networks, it is necessary to study the malicious code propagation model of P2P networks in depth. The epidemic of malicious code threatening P2P systems can be divided into the active and passive propagation models and a new passive propagation model of malicious code is proposed, which differentiates peers into 4 kinds of state and fits better for actual P2P networks. From the propagation model of malicious code, it is easy to find that quickly making peers get their patched and upgraded anti-virus system is the key way of immunization and damage control. To distribute patches and immune modules efficiently, a new exponential tree plus (ET+) and vaccine distribution algorithm based on ET+ are also proposed. The performance analysis and test results show that the vaccine distribution algorithm based on ET+ is robust, efficient and much more suitable for P2P networks.
基金Projects(51664017,51964015)supported by the National Natural Science Foundation of ChinaProject(JXUSTQJBJ2017007)supported by the Program of Qingjiang Excellent Young Talents of Jiangxi University of Science and Technology,ChinaProjects(GJJ160616,GJJ171490)supported by Science and Technology Project of Jiangxi Provincial Department of Education,China
文摘A wave equation of rock under axial static stress is established using the equivalent medium method by modifying the Kelvin-Voigt model.The analytical formulas of longitudinal velocity,space and time attenuation coefficients and response frequency are obtained by solving the equation using the harmonic method.A series of experiments on stress wave propagation through rock under different axial static stresses have been conducted.The proposed models of stress wave propagation are then verified by comparing experimental results with theoretical solutions.Based on the verified theoretical models,the influences of axial static stress on longitudinal velocity,space and time attenuation coefficients and response frequency are investigated by detailed parametric studies.The results show that the proposed theoretical models can be used to effectively investigate the effects of axial static stress on the stress wave propagation in rock.The axial static stress influences stress wave propagation characteristics of porous rock by varying the level of rock porosity and damage.Moreover,the initial porosity,initial elastic modulus of the rock voids and skeleton,viscous coefficient and vibration frequency have significant effects on the P-wave velocity,attenuation characteristics and response frequency of the stress wave in porous rock under axial static stress.
文摘本文以黄河利津站和浙江省白溪水库的月径流水文序列为例,在自相关分析的基础上,建立自回归autoregression模型,并参照其结构建立了相应的resilient back propagation神经网络预报模型.比较结果显示:(1)resilient back propagation模型的模拟预报结果与序列的自相关性有密切关系;(2)当序列有较好的自相关性时,可参照autoregression模型建立相应的resilient back propagation模型;(3)与传统autoregression模型相比,resilient back propagation模型能取得更高的预报精度;且随着预报步长增加,resilient back propagation模型的优势更加明显.
文摘In this study, kerosene fuel-rich gas produced by the combustion in the gas generator was used as the fuel and oxygen-rich air was used as the oxidant to investigate the propagation characteristics of the rotating detonation wave (RDW). The initiation of the kerosene fuel-rich gas and propagation process of the RDW were analyzed. The influences of the oxygen content in the oxidizer, kerosene mass flow rate of the gas generator, and temperature of the kerosene fuel-rich gas on the propagation process of the RDW were studied. The experimental results revealed that the propagation velocity of the RDW could be improved by increasing the three parameters mentioned above with the kerosene mass flow rate as the strongest factor. The minimum oxygen content that could successfully initiate and maintain the stable propagation of the RDW was 32%, achieving the RDW velocity of 1141.9 m/s. The RDW mainly propagated as two-counter rotating waves and a single wave when the equivalent ratios were 0.62–0.79 and 0.85–0.87, respectively. The highest RDW velocity of 1637.2 m/s was obtained when the kerosene mass flow rate, oxygen content, and equivalent ratio were 74.6 g/s, 44%, and 0.87, respectively.
基金the DAAD Faculty Development for Ph.D.Candidates(Balochistan)2016(57245990)-HRDI-UESTP’s/UET’s funding scheme in cooperation with the Higher Education Commission of Pakistan(HEC)for sponsoring the stay at IMF TU Freiberg,Germany.
文摘In this research,a detailed multi-physics study has been carried out by numerically simulating a solid fractured gun barrel for 20 thermo-mechanical cycles.The numerical model is based on thermal effects,mechanical stress fields and fatigue crack mechanics.Elastic-plastic material data of modified AISI 4340 at temperatures ranging from 25 to 1200℃and at strain rates of 4,16,32 and 48 s^(-1) was acquired from high-temperature compression tests.This was used as material property data in the simulation model.The boundary conditions applied are kept similar to the working gun barrel during continuous firing.A methodology has been provided to define thermo-mechanically active surface-to-surface type interface between the crack faces for a better approximation of stresses at the crack tip.Comparison of results from non-autofrettaged and autofrettaged simulation models provide useful information about the evolution of strains and stresses in the barrel at different points under combined thermo-mechanical loading cycles in both cases.The effect of thermal fatigue under already induced compressive yield due to autofrettage and the progressive degradation of the accumulated stresses due to thermo-mechanical cyclic loads on the internal surface of the gun barrel(mimicking the continuous firing scenario)has been analyzed.Comparison between energy release rate at tips of varying crack lengths due to cyclic thermo-mechanical loading in the non-autofrettaged and autofrettaged gun has been carried out.