In this paper, the vertical and horizontal distributions of an invariant sub-manifold of a Riemannian product manifold are discussed. An invariant real space form in a Riemannian product manifold is researched. Finall...In this paper, the vertical and horizontal distributions of an invariant sub-manifold of a Riemannian product manifold are discussed. An invariant real space form in a Riemannian product manifold is researched. Finally, necessary and sufficient conditions are given on an invariant submanifold of a Riemannian product manifold to be a locally symmetric and real space form.展开更多
Let (M, F ) be the product complex Finsler manifold of two strongly pseudoconvex complex Finsler manifolds (M 1 , F 1 ) and (M 2 , F 2 ). In this paper, we obtain the relationship between the Chern Finsler conne...Let (M, F ) be the product complex Finsler manifold of two strongly pseudoconvex complex Finsler manifolds (M 1 , F 1 ) and (M 2 , F 2 ). In this paper, we obtain the relationship between the Chern Finsler connection coefficients Γ i ; k associated to F and the Chern Finsler connection coefficients Γ a ; c , Γα ; γ associated to F 1 , F 2 , respectively. As applications we prove that, if both (M 1 , F 1 ) and (M 2 , F 2 ) are strongly Ka¨hler Finsler (complex Berwald, or locally complex Minkowski, respectively) manifolds, so does (M, F ). Furthermore, we prove that the holomorphic curvature K F = 0 if and only if K F1 = 0 and K F2 = 0.展开更多
This paper discusses submanifolds of product Riemannian manifold, and proves that an invariant submanifold of product Riemannian manifold can he written as a production.
Warped product manifolds are known to have applications in physics. For instance, they provide an excellent setting to model space-time near a black hole or a massive star (cf. [9]). The studies on warped product ma...Warped product manifolds are known to have applications in physics. For instance, they provide an excellent setting to model space-time near a black hole or a massive star (cf. [9]). The studies on warped product manifolds with extrinsic geometric point of view were intensified after the B.Y. Chen's work on CR-warped product submanifolds of Kaehler manifolds (cf. [6], [7]). Later on, similar studies were carried out in the setting of 1.c.K. manifolds and nearly Kaehler manifolds (el. [3], [11]). In the present article, we investigate a larger class of warped product submanifolds of 1.c.K. manifolds, ensure their existence by constructing an example of such manifolds and obtain some important properties of these submanifolds. With regard to the CR-warped product submanifold, a special case of generic warped product submanifolds, we obtain a characterization under which a CR-submanifold is reducesd to a CR-warped product submanifold.展开更多
文摘In this paper, the vertical and horizontal distributions of an invariant sub-manifold of a Riemannian product manifold are discussed. An invariant real space form in a Riemannian product manifold is researched. Finally, necessary and sufficient conditions are given on an invariant submanifold of a Riemannian product manifold to be a locally symmetric and real space form.
基金supported by Program for New Century Excellent Talents in Fujian Provincial Universitythe Natural Science Foundation of China (10971170 10601040)
文摘Let (M, F ) be the product complex Finsler manifold of two strongly pseudoconvex complex Finsler manifolds (M 1 , F 1 ) and (M 2 , F 2 ). In this paper, we obtain the relationship between the Chern Finsler connection coefficients Γ i ; k associated to F and the Chern Finsler connection coefficients Γ a ; c , Γα ; γ associated to F 1 , F 2 , respectively. As applications we prove that, if both (M 1 , F 1 ) and (M 2 , F 2 ) are strongly Ka¨hler Finsler (complex Berwald, or locally complex Minkowski, respectively) manifolds, so does (M, F ). Furthermore, we prove that the holomorphic curvature K F = 0 if and only if K F1 = 0 and K F2 = 0.
文摘This paper discusses submanifolds of product Riemannian manifold, and proves that an invariant submanifold of product Riemannian manifold can he written as a production.
基金supported by the research grant(162/428)of the Research centre,faculty of Science,King Abdul Aziz University, K.S.A
文摘Warped product manifolds are known to have applications in physics. For instance, they provide an excellent setting to model space-time near a black hole or a massive star (cf. [9]). The studies on warped product manifolds with extrinsic geometric point of view were intensified after the B.Y. Chen's work on CR-warped product submanifolds of Kaehler manifolds (cf. [6], [7]). Later on, similar studies were carried out in the setting of 1.c.K. manifolds and nearly Kaehler manifolds (el. [3], [11]). In the present article, we investigate a larger class of warped product submanifolds of 1.c.K. manifolds, ensure their existence by constructing an example of such manifolds and obtain some important properties of these submanifolds. With regard to the CR-warped product submanifold, a special case of generic warped product submanifolds, we obtain a characterization under which a CR-submanifold is reducesd to a CR-warped product submanifold.