期刊文献+
共找到41,476篇文章
< 1 2 250 >
每页显示 20 50 100
A Rapid Adaptation Approach for Dynamic Air‑Writing Recognition Using Wearable Wristbands with Self‑Supervised Contrastive Learning
1
作者 Yunjian Guo Kunpeng Li +4 位作者 Wei Yue Nam‑Young Kim Yang Li Guozhen Shen Jong‑Chul Lee 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期417-431,共15页
Wearable wristband systems leverage deep learning to revolutionize hand gesture recognition in daily activities.Unlike existing approaches that often focus on static gestures and require extensive labeled data,the pro... Wearable wristband systems leverage deep learning to revolutionize hand gesture recognition in daily activities.Unlike existing approaches that often focus on static gestures and require extensive labeled data,the proposed wearable wristband with selfsupervised contrastive learning excels at dynamic motion tracking and adapts rapidly across multiple scenarios.It features a four-channel sensing array composed of an ionic hydrogel with hierarchical microcone structures and ultrathin flexible electrodes,resulting in high-sensitivity capacitance output.Through wireless transmission from a Wi-Fi module,the proposed algorithm learns latent features from the unlabeled signals of random wrist movements.Remarkably,only few-shot labeled data are sufficient for fine-tuning the model,enabling rapid adaptation to various tasks.The system achieves a high accuracy of 94.9%in different scenarios,including the prediction of eight-direction commands,and air-writing of all numbers and letters.The proposed method facilitates smooth transitions between multiple tasks without the need for modifying the structure or undergoing extensive task-specific training.Its utility has been further extended to enhance human–machine interaction over digital platforms,such as game controls,calculators,and three-language login systems,offering users a natural and intuitive way of communication. 展开更多
关键词 Wearable wristband Self-supervised contrastive learning Dynamic gesture Air-writing Human-machine interaction
在线阅读 下载PDF
High-throughput screening of CO_(2) cycloaddition MOF catalyst with an explainable machine learning model
2
作者 Xuefeng Bai Yi Li +3 位作者 Yabo Xie Qiancheng Chen Xin Zhang Jian-Rong Li 《Green Energy & Environment》 SCIE EI CAS 2025年第1期132-138,共7页
The high porosity and tunable chemical functionality of metal-organic frameworks(MOFs)make it a promising catalyst design platform.High-throughput screening of catalytic performance is feasible since the large MOF str... The high porosity and tunable chemical functionality of metal-organic frameworks(MOFs)make it a promising catalyst design platform.High-throughput screening of catalytic performance is feasible since the large MOF structure database is available.In this study,we report a machine learning model for high-throughput screening of MOF catalysts for the CO_(2) cycloaddition reaction.The descriptors for model training were judiciously chosen according to the reaction mechanism,which leads to high accuracy up to 97%for the 75%quantile of the training set as the classification criterion.The feature contribution was further evaluated with SHAP and PDP analysis to provide a certain physical understanding.12,415 hypothetical MOF structures and 100 reported MOFs were evaluated under 100℃ and 1 bar within one day using the model,and 239 potentially efficient catalysts were discovered.Among them,MOF-76(Y)achieved the top performance experimentally among reported MOFs,in good agreement with the prediction. 展开更多
关键词 Metal-organic frameworks High-throughput screening Machine learning Explainable model CO_(2)cycloaddition
在线阅读 下载PDF
Multi-model ensemble learning for battery state-of-health estimation:Recent advances and perspectives
3
作者 Chuanping Lin Jun Xu +4 位作者 Delong Jiang Jiayang Hou Ying Liang Zhongyue Zou Xuesong Mei 《Journal of Energy Chemistry》 2025年第1期739-759,共21页
The burgeoning market for lithium-ion batteries has stimulated a growing need for more reliable battery performance monitoring. Accurate state-of-health(SOH) estimation is critical for ensuring battery operational per... The burgeoning market for lithium-ion batteries has stimulated a growing need for more reliable battery performance monitoring. Accurate state-of-health(SOH) estimation is critical for ensuring battery operational performance. Despite numerous data-driven methods reported in existing research for battery SOH estimation, these methods often exhibit inconsistent performance across different application scenarios. To address this issue and overcome the performance limitations of individual data-driven models,integrating multiple models for SOH estimation has received considerable attention. Ensemble learning(EL) typically leverages the strengths of multiple base models to achieve more robust and accurate outputs. However, the lack of a clear review of current research hinders the further development of ensemble methods in SOH estimation. Therefore, this paper comprehensively reviews multi-model ensemble learning methods for battery SOH estimation. First, existing ensemble methods are systematically categorized into 6 classes based on their combination strategies. Different realizations and underlying connections are meticulously analyzed for each category of EL methods, highlighting distinctions, innovations, and typical applications. Subsequently, these ensemble methods are comprehensively compared in terms of base models, combination strategies, and publication trends. Evaluations across 6 dimensions underscore the outstanding performance of stacking-based ensemble methods. Following this, these ensemble methods are further inspected from the perspectives of weighted ensemble and diversity, aiming to inspire potential approaches for enhancing ensemble performance. Moreover, addressing challenges such as base model selection, measuring model robustness and uncertainty, and interpretability of ensemble models in practical applications is emphasized. Finally, future research prospects are outlined, specifically noting that deep learning ensemble is poised to advance ensemble methods for battery SOH estimation. The convergence of advanced machine learning with ensemble learning is anticipated to yield valuable avenues for research. Accelerated research in ensemble learning holds promising prospects for achieving more accurate and reliable battery SOH estimation under real-world conditions. 展开更多
关键词 Lithium-ion battery State-of-health estimation DATA-DRIVEN Machine learning Ensemble learning Ensemble diversity
在线阅读 下载PDF
Machine learning empowers efficient design of ternary organic solar cells with PM6 donor
4
作者 Kiran A.Nirmal Tukaram D.Dongale +2 位作者 Santosh S.Sutar Atul C.Khot Tae Geun Kim 《Journal of Energy Chemistry》 2025年第1期337-347,共11页
Organic solar cells(OSCs) hold great potential as a photovoltaic technology for practical applications.However, the traditional experimental trial-and-error method for designing and engineering OSCs can be complex, ex... Organic solar cells(OSCs) hold great potential as a photovoltaic technology for practical applications.However, the traditional experimental trial-and-error method for designing and engineering OSCs can be complex, expensive, and time-consuming. Machine learning(ML) techniques enable the proficient extraction of information from datasets, allowing the development of realistic models that are capable of predicting the efficacy of materials with commendable accuracy. The PM6 donor has great potential for high-performance OSCs. However, it is crucial for the rational design of a ternary blend to accurately forecast the power conversion efficiency(PCE) of ternary OSCs(TOSCs) based on a PM6 donor.Accordingly, we collected the device parameters of PM6-based TOSCs and evaluated the feature importance of their molecule descriptors to develop predictive models. In this study, we used five different ML algorithms for analysis and prediction. For the analysis, the classification and regression tree provided different rules, heuristics, and patterns from the heterogeneous dataset. The random forest algorithm outperforms other prediction ML algorithms in predicting the output performance of PM6-based TOSCs. Finally, we validated the ML outcomes by fabricating PM6-based TOSCs. Our study presents a rapid strategy for assessing a high PCE while elucidating the substantial influence of diverse descriptors. 展开更多
关键词 Machine learning Ternary organic solarcells PM6 donor PCE
在线阅读 下载PDF
Continuum estimation in low-resolution gamma-ray spectra based on deep learning
5
作者 Ri Zhao Li-Ye Liu +5 位作者 Xin Liu Zhao-Xing Liu Run-Cheng Liang Ren-Jing Ling-Hu Jing Zhang Fa-Guo Chen 《Nuclear Science and Techniques》 2025年第2期5-17,共13页
In this study,an end-to-end deep learning method is proposed to improve the accuracy of continuum estimation in low-resolution gamma-ray spectra.A novel process for generating the theoretical continuum of a simulated ... In this study,an end-to-end deep learning method is proposed to improve the accuracy of continuum estimation in low-resolution gamma-ray spectra.A novel process for generating the theoretical continuum of a simulated spectrum is established,and a convolutional neural network consisting of 51 layers and more than 105 parameters is constructed to directly predict the entire continuum from the extracted global spectrum features.For testing,an in-house NaI-type whole-body counter is used,and 106 training spectrum samples(20%of which are reserved for testing)are generated using Monte Carlo simulations.In addition,the existing fitting,step-type,and peak erosion methods are selected for comparison.The proposed method exhibits excellent performance,as evidenced by its activity error distribution and the smallest mean activity error of 1.5%among the evaluated methods.Additionally,a validation experiment is performed using a whole-body counter to analyze a human physical phantom containing four radionuclides.The largest activity error of the proposed method is−5.1%,which is considerably smaller than those of the comparative methods,confirming the test results.The multiscale feature extraction and nonlinear relation modeling in the proposed method establish a novel approach for accurate and convenient continuum estimation in a low-resolution gamma-ray spectrum.Thus,the proposed method is promising for accurate quantitative radioactivity analysis in practical applications. 展开更多
关键词 Gamma-ray spectrum Continuum estimation Deep learning Convolutional neural network End-to-end prediction
在线阅读 下载PDF
Few-shot learning for screening 2D Ga_(2)CoS_(4-x) supported single-atom catalysts for hydrogen production
6
作者 Nabil Khossossi Poulumi Dey 《Journal of Energy Chemistry》 2025年第1期665-673,共9页
Hydrogen generation and related energy applications heavily rely on the hydrogen evolution reaction(HER),which faces challenges of slow kinetics and high overpotential.Efficient electrocatalysts,particularly single-at... Hydrogen generation and related energy applications heavily rely on the hydrogen evolution reaction(HER),which faces challenges of slow kinetics and high overpotential.Efficient electrocatalysts,particularly single-atom catalysts (SACs) on two-dimensional (2D) materials,are essential.This study presents a few-shot machine learning (ML) assisted high-throughput screening of 2D septuple-atomic-layer Ga_(2)CoS_(4-x)supported SACs to predict HER catalytic activity.Initially,density functional theory (DFT)calculations showed that 2D Ga_(2)CoS4is inactive for HER.However,defective Ga_(2)CoS_(4-x)(x=0–0.25)monolayers exhibit excellent HER activity due to surface sulfur vacancies (SVs),with predicted overpotentials (0–60 mV) comparable to or lower than commercial Pt/C,which typically exhibits an overpotential of around 50 m V in the acidic electrolyte,when the concentration of surface SV is lower than 8.3%.SVs generate spin-polarized states near the Fermi level,making them effective HER sites.We demonstrate ML-accelerated HER overpotential predictions for all transition metal SACs on 2D Ga_(2)CoS_(4-x).Using DFT data from 18 SACs,an ML model with high prediction accuracy and reduced computation time was developed.An intrinsic descriptor linking SAC atomic properties to HER overpotential was identified.This study thus provides a framework for screening SACs on 2D materials,enhancing catalyst design. 展开更多
关键词 Hydrogen production ELECTROCATALYST 2D material Density functional theory Machine learning Surface sulfur vacancy
在线阅读 下载PDF
基于改进Q-learning算法智能仓储AGV路径规划
7
作者 耿华 冯涛 《现代信息科技》 2025年第2期171-175,共5页
作为智能物流系统中重要运输工具的自动引导车(Automated Guided Vehicle,AGV),AGV路径规划与避障算法是移动机器人领域重要研究热点之一。为了解决现有仓储环境下的AGV在运用Q-learning算法进行路径规划时的前期收敛速度慢且探索利用... 作为智能物流系统中重要运输工具的自动引导车(Automated Guided Vehicle,AGV),AGV路径规划与避障算法是移动机器人领域重要研究热点之一。为了解决现有仓储环境下的AGV在运用Q-learning算法进行路径规划时的前期收敛速度慢且探索利用不平衡的问题,提出一种结合引力势场改进Q-learning的算法,同时对贪婪系数进行动态调整。首先,针对传统的Q-learning算法规划时学习效率低问题,构建从AGV到目标点的引力场,引导AGV始终朝着目标点方向移动,减少算法初期盲目性,加强初始阶段的目标性。然后,解决算法探索利用平衡问题,对贪婪系数进行动态改进。仿真实验表明,探索速率提升的同时,算法稳定性也有一定的提升。 展开更多
关键词 Q-learning算法 强化学习 人工势场算法 AGV 路径规划
在线阅读 下载PDF
基于Q-learning算法的机场航班延误预测
8
作者 刘琪 乐美龙 《航空计算技术》 2025年第1期28-32,共5页
将改进的深度信念网络(DBN)和Q-learning算法结合建立组合预测模型。首先将延误预测问题建模为一个标准的马尔可夫决策过程,使用改进的深度信念网络来选择关键特征。经深度信念网络分析,从46个特征变量中选择出27个关键特征类别作为延... 将改进的深度信念网络(DBN)和Q-learning算法结合建立组合预测模型。首先将延误预测问题建模为一个标准的马尔可夫决策过程,使用改进的深度信念网络来选择关键特征。经深度信念网络分析,从46个特征变量中选择出27个关键特征类别作为延误时间的最终解释变量输入Q-learning算法中,从而实现对航班延误的实时预测。使用北京首都国际机场航班数据进行测试实验,实验结果表明,所提出的模型可以有效预测航班延误,平均误差为4.05 min。将提出的组合算法性能与4种基准方法进行比较,基于DBN的Q-learning算法的延误预测准确性高于另外四种算法,具有较高的预测精度。 展开更多
关键词 航空运输 航班延误预测 深度信念网络 Q-learning 航班延误
在线阅读 下载PDF
M-learning结合CBL在消化科规培教学中的探讨及应用
9
作者 洪静 程中华 +3 位作者 余金玲 王韶英 嵇贝纳 冯珍 《中国卫生产业》 2024年第2期203-205,共3页
目的探究移动学习平台(M-learning,ML)结合案例教学(Case-based Learning,CBL)在消化科住院医师规范化培训(简称规培)教学中的应用效果。方法选取2021年1月—2023年1月于上海市徐汇区中心医院消化科参加规培学习的80名医师作为研究对象... 目的探究移动学习平台(M-learning,ML)结合案例教学(Case-based Learning,CBL)在消化科住院医师规范化培训(简称规培)教学中的应用效果。方法选取2021年1月—2023年1月于上海市徐汇区中心医院消化科参加规培学习的80名医师作为研究对象,将其按照随机数表法分为研究组和对照组,每组40名。对照组给予传统讲授式教学法,研究组给予M-learning结合CBL教学法,对比两组医师的理论考试成绩、实践技能考试成绩和学习满意度。结果研究组的理论成绩和实践技能考试成绩均高于对照组,差异具有统计学意义(P均<0.05);研究组的学习满意度明显高于对照组,差异具有统计学意义(P<0.05)。结论将Mlearning结合CBL教学法应用于消化科规培教学中,不仅能够提升医师的理论考试成绩和实践技能考试成绩,还能够有效提高医师学习满意度。 展开更多
关键词 M-learning CBL 消化科 规培教学
在线阅读 下载PDF
基于Q-Learning的航空器滑行路径规划研究
10
作者 王兴隆 王睿峰 《中国民航大学学报》 CAS 2024年第3期28-33,共6页
针对传统算法规划航空器滑行路径准确度低、不能根据整体场面运行情况进行路径规划的问题,提出一种基于Q-Learning的路径规划方法。通过对机场飞行区网络结构模型和强化学习的仿真环境分析,设置了状态空间和动作空间,并根据路径的合规... 针对传统算法规划航空器滑行路径准确度低、不能根据整体场面运行情况进行路径规划的问题,提出一种基于Q-Learning的路径规划方法。通过对机场飞行区网络结构模型和强化学习的仿真环境分析,设置了状态空间和动作空间,并根据路径的合规性和合理性设定了奖励函数,将路径合理性评价值设置为滑行路径长度与飞行区平均滑行时间乘积的倒数。最后,分析了动作选择策略参数对路径规划模型的影响。结果表明,与A*算法和Floyd算法相比,基于Q-Learning的路径规划在滑行距离最短的同时,避开了相对繁忙的区域,路径合理性评价值高。 展开更多
关键词 滑行路径规划 机场飞行区 强化学习 Q-learning
在线阅读 下载PDF
Machine learning for predicting the outcome of terminal ballistics events 被引量:2
11
作者 Shannon Ryan Neeraj Mohan Sushma +4 位作者 Arun Kumar AV Julian Berk Tahrima Hashem Santu Rana Svetha Venkatesh 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期14-26,共13页
Machine learning(ML) is well suited for the prediction of high-complexity,high-dimensional problems such as those encountered in terminal ballistics.We evaluate the performance of four popular ML-based regression mode... Machine learning(ML) is well suited for the prediction of high-complexity,high-dimensional problems such as those encountered in terminal ballistics.We evaluate the performance of four popular ML-based regression models,extreme gradient boosting(XGBoost),artificial neural network(ANN),support vector regression(SVR),and Gaussian process regression(GP),on two common terminal ballistics’ problems:(a)predicting the V50ballistic limit of monolithic metallic armour impacted by small and medium calibre projectiles and fragments,and(b) predicting the depth to which a projectile will penetrate a target of semi-infinite thickness.To achieve this we utilise two datasets,each consisting of approximately 1000samples,collated from public release sources.We demonstrate that all four model types provide similarly excellent agreement when interpolating within the training data and diverge when extrapolating outside this range.Although extrapolation is not advisable for ML-based regression models,for applications such as lethality/survivability analysis,such capability is required.To circumvent this,we implement expert knowledge and physics-based models via enforced monotonicity,as a Gaussian prior mean,and through a modified loss function.The physics-informed models demonstrate improved performance over both classical physics-based models and the basic ML regression models,providing an ability to accurately fit experimental data when it is available and then revert to the physics-based model when not.The resulting models demonstrate high levels of predictive accuracy over a very wide range of projectile types,target materials and thicknesses,and impact conditions significantly more diverse than that achievable from any existing analytical approach.Compared with numerical analysis tools such as finite element solvers the ML models run orders of magnitude faster.We provide some general guidelines throughout for the development,application,and reporting of ML models in terminal ballistics problems. 展开更多
关键词 Machine learning Artificial intelligence Physics-informed machine learning Terminal ballistics Armour
在线阅读 下载PDF
Artificial Intelligence Meets Flexible Sensors:Emerging Smart Flexible Sensing Systems Driven by Machine Learning and Artificial Synapses 被引量:5
12
作者 Tianming Sun Bin Feng +8 位作者 Jinpeng Huo Yu Xiao Wengan Wang Jin Peng Zehua Li Chengjie Du Wenxian Wang Guisheng Zou Lei Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期235-273,共39页
The recent wave of the artificial intelligence(AI)revolution has aroused unprecedented interest in the intelligentialize of human society.As an essential component that bridges the physical world and digital signals,f... The recent wave of the artificial intelligence(AI)revolution has aroused unprecedented interest in the intelligentialize of human society.As an essential component that bridges the physical world and digital signals,flexible sensors are evolving from a single sensing element to a smarter system,which is capable of highly efficient acquisition,analysis,and even perception of vast,multifaceted data.While challenging from a manual perspective,the development of intelligent flexible sensing has been remarkably facilitated owing to the rapid advances of brain-inspired AI innovations from both the algorithm(machine learning)and the framework(artificial synapses)level.This review presents the recent progress of the emerging AI-driven,intelligent flexible sensing systems.The basic concept of machine learning and artificial synapses are introduced.The new enabling features induced by the fusion of AI and flexible sensing are comprehensively reviewed,which significantly advances the applications such as flexible sensory systems,soft/humanoid robotics,and human activity monitoring.As two of the most profound innovations in the twenty-first century,the deep incorporation of flexible sensing and AI technology holds tremendous potential for creating a smarter world for human beings. 展开更多
关键词 Flexible electronics Wearable electronics Neuromorphic MEMRISTOR Deep learning
在线阅读 下载PDF
A Deep Learning Based Broadcast Approach for Image Semantic Communication over Fading Channels 被引量:2
13
作者 Ma Kangning Shi Yuxuan +1 位作者 Shao Shuo Tao Meixia 《China Communications》 SCIE CSCD 2024年第7期78-94,共17页
We consider an image semantic communication system in a time-varying fading Gaussian MIMO channel,with a finite number of channel states.A deep learning-aided broadcast approach scheme is proposed to benefit the adapt... We consider an image semantic communication system in a time-varying fading Gaussian MIMO channel,with a finite number of channel states.A deep learning-aided broadcast approach scheme is proposed to benefit the adaptive semantic transmission in terms of different channel states.We combine the classic broadcast approach with the image transformer to implement this adaptive joint source and channel coding(JSCC)scheme.Specifically,we utilize the neural network(NN)to jointly optimize the hierarchical image compression and superposition code mapping within this scheme.The learned transformers and codebooks allow recovering of the image with an adaptive quality and low error rate at the receiver side,in each channel state.The simulation results exhibit our proposed scheme can dynamically adapt the coding to the current channel state and outperform some existing intelligent schemes with the fixed coding block. 展开更多
关键词 broadcast approach deep learning fading channels semantic communication
在线阅读 下载PDF
Well-defined high entropy-metal nanoparticles:Detection of the multi-element particles by deep learning 被引量:1
14
作者 Manar Alnaasan Wail Al Zoubi +3 位作者 Salh Alhammadi Jee-Hyun Kang Sungho Kim Young Gun Ko 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期262-273,共12页
Characterizing and control the chemical compositions of multi-element particles as single metal nanoparticles(mNPs) on the surfaces of catalytic metal oxide supports is challenging.This can be attributed to the hetero... Characterizing and control the chemical compositions of multi-element particles as single metal nanoparticles(mNPs) on the surfaces of catalytic metal oxide supports is challenging.This can be attributed to the heterogeneity and large size at the nanoscale,the poorly defined catalyst nanostructure,and thermodynamic immiscibility of the strongly repelling metallic elements.To address these challenges,an ultrasonic-assisted coincident electro-oxidation-reduction-precipitation(U-SEO-P) is presented to fabricate ultra-stable PtRuAgCoCuP NPs,which produces numerous active intermediates and induces strong metal-support interactions.To sort the active high-entropy mNPs,individual NPs are described on the support surface and the role of deep learning in understanding/predicting the features of PtRuAgCoCu@TiO_(x) catalysts is explained.Notably,this deep learning approach required minimal to no human input.The as-prepared PtRuAgCoCu@TiO_(x) catalysts can be used to catalyze various important chemical reactions,such as a high reduction conversion(100% in 30 s),with no loss of catalytic activity even after 20 cycles of nitroarene and ketone/aldehyde,which is several times higher than commercial Pt@TiO_(x) owing to individual PtRuAgCoCuP NPs on TiO_(x) surface.In this study,we present the "Totally Defined Catalysis" concept,which has enormous potential for the advancement of high-activity catalysts in the reduction of organic compounds. 展开更多
关键词 Metal nanoparticles Deep learning CATALYST REDUCTION
在线阅读 下载PDF
Machine learning applications on lunar meteorite minerals:From classification to mechanical properties prediction 被引量:1
15
作者 Eloy Peña-Asensio Josep M.Trigo-Rodríguez +2 位作者 Jordi Sort Jordi Ibáñez-Insa Albert Rimola 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第9期1283-1292,共10页
Amid the scarcity of lunar meteorites and the imperative to preserve their scientific value,nondestructive testing methods are essential.This translates into the application of microscale rock mechanics experiments an... Amid the scarcity of lunar meteorites and the imperative to preserve their scientific value,nondestructive testing methods are essential.This translates into the application of microscale rock mechanics experiments and scanning electron microscopy for surface composition analysis.This study explores the application of Machine Learning algorithms in predicting the mineralogical and mechanical properties of DHOFAR 1084,JAH 838,and NWA 11444 lunar meteorites based solely on their atomic percentage compositions.Leveraging a prior-data fitted network model,we achieved near-perfect classification scores for meteorites,mineral groups,and individual minerals.The regressor models,notably the KNeighbor model,provided an outstanding estimate of the mechanical properties—previously measured by nanoindentation tests—such as hardness,reduced Young’s modulus,and elastic recovery.Further considerations on the nature and physical properties of the minerals forming these meteorites,including porosity,crystal orientation,or shock degree,are essential for refining predictions.Our findings underscore the potential of Machine Learning in enhancing mineral identification and mechanical property estimation in lunar exploration,which pave the way for new advancements and quick assessments in extraterrestrial mineral mining,processing,and research. 展开更多
关键词 METEORITES MOON MINERALOGY Machine learning Mechanical properties
在线阅读 下载PDF
Machine learning for membrane design and discovery 被引量:1
16
作者 Haoyu Yin Muzi Xu +4 位作者 Zhiyao Luo Xiaotian Bi Jiali Li Sui Zhang Xiaonan Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期54-70,共17页
Membrane technologies are becoming increasingly versatile and helpful today for sustainable development.Machine Learning(ML),an essential branch of artificial intelligence(AI),has substantially impacted the research an... Membrane technologies are becoming increasingly versatile and helpful today for sustainable development.Machine Learning(ML),an essential branch of artificial intelligence(AI),has substantially impacted the research and development norm of new materials for energy and environment.This review provides an overview and perspectives on ML methodologies and their applications in membrane design and dis-covery.A brief overview of membrane technologies isfirst provided with the current bottlenecks and potential solutions.Through an appli-cations-based perspective of AI-aided membrane design and discovery,we further show how ML strategies are applied to the membrane discovery cycle(including membrane material design,membrane application,membrane process design,and knowledge extraction),in various membrane systems,ranging from gas,liquid,and fuel cell separation membranes.Furthermore,the best practices of integrating ML methods and specific application targets in membrane design and discovery are presented with an ideal paradigm proposed.The challenges to be addressed and prospects of AI applications in membrane discovery are also highlighted in the end. 展开更多
关键词 Machine learning Membranes AI for Membrane DATA-DRIVEN DESIGN
在线阅读 下载PDF
A Fully-Integrated Memristor Chip for Edge Learning 被引量:1
17
作者 Yanhong Zhang Liang Chu Wenjun Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期123-127,共5页
It is still challenging to fully integrate computing in memory chip as edge learning devices.In recent work published on Science,a fully-integrated chip based on neuromorphic memristors was developed for edge learning... It is still challenging to fully integrate computing in memory chip as edge learning devices.In recent work published on Science,a fully-integrated chip based on neuromorphic memristors was developed for edge learning as artificial neural networks with functionality of synapses,dendrites,and somas.A crossbar-array memristor chip facilitated edge learning including hardware realization,learning algorithm,and cycle-parallel sign-and threshold-based learning(STELLAR)scheme.The motion control and demonstration platforms were executed to improve the edge learning ability for adapting to new scenarios. 展开更多
关键词 Computing in memory Edge learning Fully-integrated chip
在线阅读 下载PDF
Machine learning in metal-ion battery research: Advancing material prediction, characterization, and status evaluation 被引量:1
18
作者 Tong Yu Chunyang Wang +1 位作者 Huicong Yang Feng Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期191-204,I0006,共15页
Metal-ion batteries(MIBs),including alkali metal-ion(Li^(+),Na^(+),and K^(3)),multi-valent metal-ion(Zn^(2+),Mg^(2+),and Al^(3+)),metal-air,and metal-sulfur batteries,play an indispensable role in electrochemical ener... Metal-ion batteries(MIBs),including alkali metal-ion(Li^(+),Na^(+),and K^(3)),multi-valent metal-ion(Zn^(2+),Mg^(2+),and Al^(3+)),metal-air,and metal-sulfur batteries,play an indispensable role in electrochemical energy storage.However,the performance of MIBs is significantly influenced by numerous variables,resulting in multi-dimensional and long-term challenges in the field of battery research and performance enhancement.Machine learning(ML),with its capability to solve intricate tasks and perform robust data processing,is now catalyzing a revolutionary transformation in the development of MIB materials and devices.In this review,we summarize the utilization of ML algorithms that have expedited research on MIBs over the past five years.We present an extensive overview of existing algorithms,elucidating their details,advantages,and limitations in various applications,which encompass electrode screening,material property prediction,electrolyte formulation design,electrode material characterization,manufacturing parameter optimization,and real-time battery status monitoring.Finally,we propose potential solutions and future directions for the application of ML in advancing MIB development. 展开更多
关键词 Metal-ion battery Machine learning Electrode materials CHARACTERIZATION Status evaluation
在线阅读 下载PDF
Accurate and efficient remaining useful life prediction of batteries enabled by physics-informed machine learning 被引量:1
19
作者 Liang Ma Jinpeng Tian +2 位作者 Tieling Zhang Qinghua Guo Chunsheng Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期512-521,共10页
The safe and reliable operation of lithium-ion batteries necessitates the accurate prediction of remaining useful life(RUL).However,this task is challenging due to the diverse ageing mechanisms,various operating condi... The safe and reliable operation of lithium-ion batteries necessitates the accurate prediction of remaining useful life(RUL).However,this task is challenging due to the diverse ageing mechanisms,various operating conditions,and limited measured signals.Although data-driven methods are perceived as a promising solution,they ignore intrinsic battery physics,leading to compromised accuracy,low efficiency,and low interpretability.In response,this study integrates domain knowledge into deep learning to enhance the RUL prediction performance.We demonstrate accurate RUL prediction using only a single charging curve.First,a generalisable physics-based model is developed to extract ageing-correlated parameters that can describe and explain battery degradation from battery charging data.The parameters inform a deep neural network(DNN)to predict RUL with high accuracy and efficiency.The trained model is validated under 3 types of batteries working under 7 conditions,considering fully charged and partially charged cases.Using data from one cycle only,the proposed method achieves a root mean squared error(RMSE)of 11.42 cycles and a mean absolute relative error(MARE)of 3.19%on average,which are over45%and 44%lower compared to the two state-of-the-art data-driven methods,respectively.Besides its accuracy,the proposed method also outperforms existing methods in terms of efficiency,input burden,and robustness.The inherent relationship between the model parameters and the battery degradation mechanism is further revealed,substantiating the intrinsic superiority of the proposed method. 展开更多
关键词 Lithium-ion batteries Remaining useful life Physics-informed machine learning
在线阅读 下载PDF
An Efficient Modelling of Oversampling with Optimal Deep Learning Enabled Anomaly Detection in Streaming Data 被引量:1
20
作者 R.Rajakumar S.Sathiya Devi 《China Communications》 SCIE CSCD 2024年第5期249-260,共12页
Recently,anomaly detection(AD)in streaming data gained significant attention among research communities due to its applicability in finance,business,healthcare,education,etc.The recent developments of deep learning(DL... Recently,anomaly detection(AD)in streaming data gained significant attention among research communities due to its applicability in finance,business,healthcare,education,etc.The recent developments of deep learning(DL)models find helpful in the detection and classification of anomalies.This article designs an oversampling with an optimal deep learning-based streaming data classification(OS-ODLSDC)model.The aim of the OSODLSDC model is to recognize and classify the presence of anomalies in the streaming data.The proposed OS-ODLSDC model initially undergoes preprocessing step.Since streaming data is unbalanced,support vector machine(SVM)-Synthetic Minority Over-sampling Technique(SVM-SMOTE)is applied for oversampling process.Besides,the OS-ODLSDC model employs bidirectional long short-term memory(Bi LSTM)for AD and classification.Finally,the root means square propagation(RMSProp)optimizer is applied for optimal hyperparameter tuning of the Bi LSTM model.For ensuring the promising performance of the OS-ODLSDC model,a wide-ranging experimental analysis is performed using three benchmark datasets such as CICIDS 2018,KDD-Cup 1999,and NSL-KDD datasets. 展开更多
关键词 anomaly detection deep learning hyperparameter optimization OVERSAMPLING SMOTE streaming data
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部