Doping perylene diimide(PDI)into a polymer matrix is a simple strategy to prepare near-infrared(NIR)reflective materials,but the mechanical properties and NIR reflectance properties are significantly compromised due t...Doping perylene diimide(PDI)into a polymer matrix is a simple strategy to prepare near-infrared(NIR)reflective materials,but the mechanical properties and NIR reflectance properties are significantly compromised due to macro-phase separation.In this study,a novel polymer(denoted as PU-PDI)with intrinsic NIR reflective proper⁃ties was synthesized by covalent incorporation of PDI units into polyurethane chains.Its photophysical characteris⁃tics,mechanical property and NIR reflectance property are investigated in detail.The results show that covalent in⁃corporation reduces the severe aggregation of PDI units,thereby endows PU-PDI with excellent mechanical property.The elongation at break of PU-PDI can reach more than 700%,and the breaking strength is 34.11 MPa.Moreover,compared to the blending system,PU-PDI possesses enhanced NIR reflection ability due to the better dispersion of PDI units.展开更多
Objective:Verrucous epidermal nevus(VEN),seborrheic keratosis(SK),verruca plana(VP),verruca vulgaris(VV),and nevus sebaceous(NS)are common verrucous proliferative skin diseases with similar clinical appearances,often ...Objective:Verrucous epidermal nevus(VEN),seborrheic keratosis(SK),verruca plana(VP),verruca vulgaris(VV),and nevus sebaceous(NS)are common verrucous proliferative skin diseases with similar clinical appearances,often posing diagnostic challenges.Dermoscopy and reflectance confocal microscopy(RCM)can aid in their differentiation,yet their specific features under these tools have not been systematically described.This study aims to summarize and analyze the dermoscopic and RCM features of VEN,SK,VP,VV,and NS.Methods:A total of 121 patients with histopathologically confirmed verrucous proliferative skin diseases were enrolled.Dermoscopy and RCM imaging was used to observe and analyze the microscopic features of these conditions.Results:Under dermoscopy,the 5 diseases displayed distinct characteristics:VEN typically showed gyriform structures;SK was characterized by gyriform structures,comedo-like openings,and milia-like cysts;VP and VV featured dotted vessels and frogspawn-like structures;NS presented as brownish-yellow globules.RCM revealed shared features such as hyperkeratosis and acanthosis across all 5 diseases.Specific features included gyriform structures and elongated rete ridges in VEN;pseudocysts and gyriform structures in SK;evenly distributed ring-like structures in VP;vacuolated cells and papillomatous proliferation in VV;and frogspawn-like structures in NS.Conclusion:These 5 verrucous proliferative skin conditions exhibit distinguishable features under both dermoscopy and RCM.The combination of these 2 noninvasive imaging modalities holds significant clinical value for the differential diagnosis of verrucous proliferative skin diseases.展开更多
This research was conducted to study the performances of the heat and multilayer reflection insulators used for buildings in South Korea to realize eco-friendly, low-energy-consumption, green construction, and to cont...This research was conducted to study the performances of the heat and multilayer reflection insulators used for buildings in South Korea to realize eco-friendly, low-energy-consumption, green construction, and to contribute to energy consumption reduction in buildings and to the nation's greenhouse gas emission reduction policy (targeting 30% reduction compared to BAUCousiness as usual) by 2020). The heat insulation performance test is about the temperatures on surfaces of test piece. The high air temperature and the low air temperature were measured to determine the overall heat transfer coefficient and thermal conductivity. The conclusions are drawn that the heat transmission coefficients for each type of existing reflection insulator are: A-1 (0.045 W/(m-K)), A-2 (0.031 W/(m.K)), A-3 (0.042 W/(m.K)), A-4 (0.078 W/(m.K)), and the average heat conductivity is 0.049 W/(m-K); The heat conductivity for each type of Styrofoam insulator are 0.030 W/(m.K) for B-l, 0.032 W/(m-K) for B-2, 0.037 W/(m'K) for B-3, 0.037 W/(m.K) for B-4, and the average heat conductivity is 0.035 W/(m'K) regardless of the thickness of the insulator; The heat conductivity values of the multilayer reflection insulators are converted based on the thickness and type C-1 (0.020 W/(m.K)), C-2 (0.018 W/(m.K)), C-3 (0.016 W/(m.K)), and C-4 (0.012 W/(m.K)); The multilayer reflection insulator keeps the indoor-side surface temperature high (during winter) or low (in summer), enhances the comfort of the building occupants, and conducts heating and moisture resistance to prevent dew condensation on the glass-outer-wall surface.展开更多
Reflection engineering plays an important role in optics.For conventional approaches,the reflection tuning is quite challenging in a loss-free component.Therefore,a simple approach to tune the reflection is highly des...Reflection engineering plays an important role in optics.For conventional approaches,the reflection tuning is quite challenging in a loss-free component.Therefore,a simple approach to tune the reflection is highly desired in plenty of applications.In this paper,we propose a new design of metasurface with just one single layer dielectric structure to tune the reflection of an interface by destructive interference in a subwavelength scale.By arranging the orientation of nano-antennas,the reflectivity tuning from 20%to 90%can be achieved at the wavelength of 1550 nm.Moreover,such reflectivity tuning of the designed metasurface works at the tunable wavelength from1500 nm to 1600 nm.This ultra-thin solution can achieve similar performance as the traditional bulky components without diffraction orders,while the design and fabrication are much simple and flexible.The ultra-thin and tunable properties indicate the great potentials of this method to be applied in laser fabrication,optical communication and optical integration.展开更多
The electric-controlled metasurface antenna array(ECMSAA)with ultra-wideband frequency reconfigurable reflection suppression is proposed and realized.Firstly,an electriccontrolled metasurface with ultra-wideband frequ...The electric-controlled metasurface antenna array(ECMSAA)with ultra-wideband frequency reconfigurable reflection suppression is proposed and realized.Firstly,an electriccontrolled metasurface with ultra-wideband frequency reconfigurable in-phase reflection characteristics is designed.The element of the ECMSAA is constructed by loading the single electric-controlled metasurface unit on the conventional patch antenna element.The radiation properties of the conventional patch antenna and the reflection performance of electric-controlled metasurface are maintained when the antenna and the metasurface are integrated.Thus,the ECMSAA elements have excellent radiation properties and ultra-wideband frequency reconfigurable in-phase reflection characteristics simultaneously.To take a further step,a 6×10 ECMSAA is realized based on the designed metasurface antenna element.Simulated and measured results prove that the reflection of the ECMSAA is dynamically suppressed in the P and L bands.Meanwhile,high-gain and multi-polarization radiation properties of the ECMSAA are achieved.This design method not only realizes the frequency reconfigurable reflection suppression of the antenna array in the ultra-wide frequency band but also provides a way to develop an intelligent low-scattering antenna.展开更多
Specific to the reflected light problem on the surface of transparent body,the polarization characteristics of the reflection region are analyzed,and a polarization characterization model combining the reflection and ...Specific to the reflected light problem on the surface of transparent body,the polarization characteristics of the reflection region are analyzed,and a polarization characterization model combining the reflection and transmission effects is established.On the basis of the polarization characteristic analysis,the minimum value of normalized cross-correlation(NCC)coefficient between transmission and reflection images is solved through the gradient descent method,and their polarization degrees under the minimum correlation are acquired.According to the distribution relations of the transmitted and reflected lights in perpendicular and parallel directions,reflection separation is realized via the polarized orthogonality difference algorithm based on the degree of reflection polarization and the degree of transmission polarization.展开更多
The electromagnetic surface antenna array(EMSAA)has been proposed for obtaining reflection suppression and excellent radiation simultaneously.The antenna with rectangular radiation patch is used to design anisotropic ...The electromagnetic surface antenna array(EMSAA)has been proposed for obtaining reflection suppression and excellent radiation simultaneously.The antenna with rectangular radiation patch is used to design anisotropic electromagnetic surface.Preternatural reflection characteristics of the element antenna can be tailored depending on the incident polarizations.EMSAA can be constructed by using single structured element antenna with 90° rotation and orthometric arrangement.This orthometric arrangement of EMSAA is helpful to achieve reflection suppression and excellent radiation.The simulated results show that the reflection of EMSAA is suppressed from 5.0 GHz to 8.0 GHz with peak reduction of 12.3 dB.The linear-and circular-polarized radiation properties of EMSAA are obtained and the maximum gain is 14.3 dBi.The measured results are consistent with the simulation results.The results demonstrate that the reflection suppression and excellent radiation are achieved simultaneously.Such design of EMSAA will open the path for integrating antenna fields and electromagnetic surface(EMS)fields.展开更多
The current work is an extension of the nonlocal elasticity theory to fractional order thermo-elasticity in semiconducting nanostructure medium with voids.The analysis is made on the reflection phenomena in context of...The current work is an extension of the nonlocal elasticity theory to fractional order thermo-elasticity in semiconducting nanostructure medium with voids.The analysis is made on the reflection phenomena in context of three-phase-lag thermo-elastic model.It is observed that,four-coupled longitudinal waves and an independent shear vertical wave exist in the medium which is dispersive in nature.It is seen that longitudinal waves are damped,and shear wave is un-damped when angular frequency is less than the cut-off frequency.The voids,thermal and non-local parameter affect the dilatational waves whereas shear wave is only depending upon non-local parameter.It is found that reflection coefficients are affected by nonlocal and fractional order parameters.Reflection coefficients are calculated analytically and computed numerically for a material,silicon and discussed graphically in details.The results for local(classical)theory are obtained as a special case.The study may be useful in semiconductor nanostructure,geology and seismology in addition to semiconductor nanostructure devices.展开更多
The influence of the most important parameters on the service life of reinforced asphalt overlay with geogrid materials in bending mode was examined by employing the Taguchi method and analysis of variance techniques....The influence of the most important parameters on the service life of reinforced asphalt overlay with geogrid materials in bending mode was examined by employing the Taguchi method and analysis of variance techniques. The objectives of this experiment was to investigate the effects of grid stiffness, tensile strength, coating type, amount of tack coat, overlay thickness, crack width and stiffnesses of asphalt overlay and existing asphalt concrete on propagation of the reflection cracking. Results indicate that the stiffnesses of cracked layer and overlay are the main significant factors that can directly improve the service life of an overlay against the reflection cracking. Generally, glass grid is more effective in reinforced overlay than polyester grid. Effect of crack width of the existing layer is significant when its magnitude increases from 6 to 9 mm.展开更多
Being the core of the Songpan-Ganze block,Zoig(?) Basin is a favorable zone of oil and gas exploration. And it not only is the important deposition area of the northern Songpan-Garze in the Middle-Late Triassic, but a...Being the core of the Songpan-Ganze block,Zoig(?) Basin is a favorable zone of oil and gas exploration. And it not only is the important deposition area of the northern Songpan-Garze in the Middle-Late Triassic, but also impacts on the formation and evolution of the structural belt.To further understand the Zoig(?) Basin, we reprocessed the 0-20.0 s data of the Tangke-Hezuo deep seismic reflection profiles across the majority展开更多
The radiative properties of three different materials surfaces with one-dimensional microscale random roughness were obtained with the finite difference time domain method(FDTD) and near-to-far-field transformation.Th...The radiative properties of three different materials surfaces with one-dimensional microscale random roughness were obtained with the finite difference time domain method(FDTD) and near-to-far-field transformation.The surface height conforms to the Gaussian probability density function distribution.Various computational modeling issues that affect the accuracy of the predicted properties were discussed.The results show that,for perfect electric conductor(PEC) surfaces,as the surface roughness increases,the magnitude of the spike reduces and eventually the spike disappears,and also as the ratio of root mean square roughness to the surface correlation distance increases,the retroreflection becomes evident.The predicted values of FDTD solutions are in good agreement with the ray tracing and integral equation solutions.The overall trend of bidirectional reflection distribution function(BRDF) of PEC surfaces and silicon surfaces is the same,but the silicon's is much less than the former's.The BRDF difference from two polarization modes for the gold surfaces is little for smaller wavelength,but it is much larger for the longer wavelength and the FDTD simulation results agree well with the measured data.In terms of PEC surfaces,as the incident angle increases,the reflectivity becomes more specular.展开更多
It is always a challenging issue for radar systems to estimate the height of a low-angle target in the multipath propagation environment.The highly deterministic maximum likelihood estimator has a high accuracy,but th...It is always a challenging issue for radar systems to estimate the height of a low-angle target in the multipath propagation environment.The highly deterministic maximum likelihood estimator has a high accuracy,but the errors of the ground reflection coefficient and the reflecting surface height have serious influence on the method.In this paper,a robust es-timation method with less computation burden is proposed based on the compound reflection coefficient multipath model for low-angle targets.The compound reflection coefficient is es-timated from the received data of the array and then a one-di-mension generalized steering vector is constructed to estimate the target height.The algorithm is robust to the reflecting sur-face height error and the ground reflection coefficient error.Fi-nally,the experiment and simulation results demonstrate the validity of the proposed method.展开更多
This review presents a reflection-type holographic memory using three-dimensional(3D)speckle-shift multiplexing. First, the schematic of the proposed memory system was described. Then,experimental demonstrations of mu...This review presents a reflection-type holographic memory using three-dimensional(3D)speckle-shift multiplexing. First, the schematic of the proposed memory system was described. Then,experimental demonstrations of multiplexing in plane and along the depth direction were presented. The estimated storage capacity of single layer recording was introduced and the maximum storage capacity was discussed. To increase the storage capacity, the multi-layered recording was described. In the multilayered recording, the storage capacity can be increased by appropriate arrangement of holograms in each layer.展开更多
For designing camouflage of ground metal target against millimeter wave(MMW) passive detections,based on the radiation and reflection theories related to MMW passive detection and an assumption of high frequency appro...For designing camouflage of ground metal target against millimeter wave(MMW) passive detections,based on the radiation and reflection theories related to MMW passive detection and an assumption of high frequency approximation,simplified models of two kinds of ground metal targets are established.Analysis indicates that the reflection from ground is the leading factor on a ground metal target's radiant temperature.In an 8-mm imaging experiment,the uneven distribution of radiant temperatures in horizontal and vertical metal plates is directly perceived.In a radiometer experiment,two positions of a radiometer device are utilized to obtain the radiant temperatures of a horizontal metal in two different grounds(made of asphalt and metal net respectively),which are 295.41 K and 301.55 K,respectively.The experimental results are close to the analytical results calculated from the proposed simplified models,which are 306 K and 296 K,respectively.According to the simplified models,different parts of a vertical plate receive incident MMW of different angles from the asphalt background.The radiant temperature of a vertical metal plate obtained from a radiometer experiment at night is 307 K,and it is in coherent with 304.22 K,the result from calculation using the simplified model of vertical plate.Both the analytic results and the experimental results agree with the uneven distribution of radiant temperature.展开更多
Australian women writers have taken active roles in the literary field under the influence of the Feminist Movement around the world since the latter half of the 20 th century. Kate Grenville rose to fame for her earl...Australian women writers have taken active roles in the literary field under the influence of the Feminist Movement around the world since the latter half of the 20 th century. Kate Grenville rose to fame for her early novel Lillian's Story representative of radical feminism. Ten years later in 1994,on reflection,she wrote Dark Places as a complementary work in the point viewof the very man,father and rapist,Albion,who appeared in the earlier novel. By reading the dark places,the inner heart of a patriarchal man and the undercurrent of misogyny in Albion's social world,the author sympathizes with and seeks to understand the inner nature of men,indicating her change in vision from initial radicalism to post- feminism which advocates understanding and harmony between men and women.展开更多
文摘Doping perylene diimide(PDI)into a polymer matrix is a simple strategy to prepare near-infrared(NIR)reflective materials,but the mechanical properties and NIR reflectance properties are significantly compromised due to macro-phase separation.In this study,a novel polymer(denoted as PU-PDI)with intrinsic NIR reflective proper⁃ties was synthesized by covalent incorporation of PDI units into polyurethane chains.Its photophysical characteris⁃tics,mechanical property and NIR reflectance property are investigated in detail.The results show that covalent in⁃corporation reduces the severe aggregation of PDI units,thereby endows PU-PDI with excellent mechanical property.The elongation at break of PU-PDI can reach more than 700%,and the breaking strength is 34.11 MPa.Moreover,compared to the blending system,PU-PDI possesses enhanced NIR reflection ability due to the better dispersion of PDI units.
基金supported by the Project of Health Committee of Hunan Province(D202304128868),China.
文摘Objective:Verrucous epidermal nevus(VEN),seborrheic keratosis(SK),verruca plana(VP),verruca vulgaris(VV),and nevus sebaceous(NS)are common verrucous proliferative skin diseases with similar clinical appearances,often posing diagnostic challenges.Dermoscopy and reflectance confocal microscopy(RCM)can aid in their differentiation,yet their specific features under these tools have not been systematically described.This study aims to summarize and analyze the dermoscopic and RCM features of VEN,SK,VP,VV,and NS.Methods:A total of 121 patients with histopathologically confirmed verrucous proliferative skin diseases were enrolled.Dermoscopy and RCM imaging was used to observe and analyze the microscopic features of these conditions.Results:Under dermoscopy,the 5 diseases displayed distinct characteristics:VEN typically showed gyriform structures;SK was characterized by gyriform structures,comedo-like openings,and milia-like cysts;VP and VV featured dotted vessels and frogspawn-like structures;NS presented as brownish-yellow globules.RCM revealed shared features such as hyperkeratosis and acanthosis across all 5 diseases.Specific features included gyriform structures and elongated rete ridges in VEN;pseudocysts and gyriform structures in SK;evenly distributed ring-like structures in VP;vacuolated cells and papillomatous proliferation in VV;and frogspawn-like structures in NS.Conclusion:These 5 verrucous proliferative skin conditions exhibit distinguishable features under both dermoscopy and RCM.The combination of these 2 noninvasive imaging modalities holds significant clinical value for the differential diagnosis of verrucous proliferative skin diseases.
基金Project(NRF-2010-0024155) supported by the National Research Foundation of Korea
文摘This research was conducted to study the performances of the heat and multilayer reflection insulators used for buildings in South Korea to realize eco-friendly, low-energy-consumption, green construction, and to contribute to energy consumption reduction in buildings and to the nation's greenhouse gas emission reduction policy (targeting 30% reduction compared to BAUCousiness as usual) by 2020). The heat insulation performance test is about the temperatures on surfaces of test piece. The high air temperature and the low air temperature were measured to determine the overall heat transfer coefficient and thermal conductivity. The conclusions are drawn that the heat transmission coefficients for each type of existing reflection insulator are: A-1 (0.045 W/(m-K)), A-2 (0.031 W/(m.K)), A-3 (0.042 W/(m.K)), A-4 (0.078 W/(m.K)), and the average heat conductivity is 0.049 W/(m-K); The heat conductivity for each type of Styrofoam insulator are 0.030 W/(m.K) for B-l, 0.032 W/(m-K) for B-2, 0.037 W/(m'K) for B-3, 0.037 W/(m.K) for B-4, and the average heat conductivity is 0.035 W/(m'K) regardless of the thickness of the insulator; The heat conductivity values of the multilayer reflection insulators are converted based on the thickness and type C-1 (0.020 W/(m.K)), C-2 (0.018 W/(m.K)), C-3 (0.016 W/(m.K)), and C-4 (0.012 W/(m.K)); The multilayer reflection insulator keeps the indoor-side surface temperature high (during winter) or low (in summer), enhances the comfort of the building occupants, and conducts heating and moisture resistance to prevent dew condensation on the glass-outer-wall surface.
基金financially supported by A*STAR, SERC 2014 Public Sector Research Funding (PSF) (Grant: SERC Project 1421200080)973 Program of China (2013CBA01700)+1 种基金Chinese Nature Science Grant (61675207)Mr.Li Yang acknowledges the support from China Scholarship Council (CSC)
文摘Reflection engineering plays an important role in optics.For conventional approaches,the reflection tuning is quite challenging in a loss-free component.Therefore,a simple approach to tune the reflection is highly desired in plenty of applications.In this paper,we propose a new design of metasurface with just one single layer dielectric structure to tune the reflection of an interface by destructive interference in a subwavelength scale.By arranging the orientation of nano-antennas,the reflectivity tuning from 20%to 90%can be achieved at the wavelength of 1550 nm.Moreover,such reflectivity tuning of the designed metasurface works at the tunable wavelength from1500 nm to 1600 nm.This ultra-thin solution can achieve similar performance as the traditional bulky components without diffraction orders,while the design and fabrication are much simple and flexible.The ultra-thin and tunable properties indicate the great potentials of this method to be applied in laser fabrication,optical communication and optical integration.
基金the National Natural Science Foundation of China(61901493,61901492,61801485)the Natural Science Foundation of Hunan Province(2020JJ5676).
文摘The electric-controlled metasurface antenna array(ECMSAA)with ultra-wideband frequency reconfigurable reflection suppression is proposed and realized.Firstly,an electriccontrolled metasurface with ultra-wideband frequency reconfigurable in-phase reflection characteristics is designed.The element of the ECMSAA is constructed by loading the single electric-controlled metasurface unit on the conventional patch antenna element.The radiation properties of the conventional patch antenna and the reflection performance of electric-controlled metasurface are maintained when the antenna and the metasurface are integrated.Thus,the ECMSAA elements have excellent radiation properties and ultra-wideband frequency reconfigurable in-phase reflection characteristics simultaneously.To take a further step,a 6×10 ECMSAA is realized based on the designed metasurface antenna element.Simulated and measured results prove that the reflection of the ECMSAA is dynamically suppressed in the P and L bands.Meanwhile,high-gain and multi-polarization radiation properties of the ECMSAA are achieved.This design method not only realizes the frequency reconfigurable reflection suppression of the antenna array in the ultra-wide frequency band but also provides a way to develop an intelligent low-scattering antenna.
基金supported by the National Natural Science Foundation of China(62075239,61302145).
文摘Specific to the reflected light problem on the surface of transparent body,the polarization characteristics of the reflection region are analyzed,and a polarization characterization model combining the reflection and transmission effects is established.On the basis of the polarization characteristic analysis,the minimum value of normalized cross-correlation(NCC)coefficient between transmission and reflection images is solved through the gradient descent method,and their polarization degrees under the minimum correlation are acquired.According to the distribution relations of the transmitted and reflected lights in perpendicular and parallel directions,reflection separation is realized via the polarized orthogonality difference algorithm based on the degree of reflection polarization and the degree of transmission polarization.
基金supported by the National Natural Science Foundation of China(61901493,61901492)the Natural Science Foundation of Hunan Province(2020JJ5676)the Science and Technology Innovation Program of Hunan Province(2020RC2048).
文摘The electromagnetic surface antenna array(EMSAA)has been proposed for obtaining reflection suppression and excellent radiation simultaneously.The antenna with rectangular radiation patch is used to design anisotropic electromagnetic surface.Preternatural reflection characteristics of the element antenna can be tailored depending on the incident polarizations.EMSAA can be constructed by using single structured element antenna with 90° rotation and orthometric arrangement.This orthometric arrangement of EMSAA is helpful to achieve reflection suppression and excellent radiation.The simulated results show that the reflection of EMSAA is suppressed from 5.0 GHz to 8.0 GHz with peak reduction of 12.3 dB.The linear-and circular-polarized radiation properties of EMSAA are obtained and the maximum gain is 14.3 dBi.The measured results are consistent with the simulation results.The results demonstrate that the reflection suppression and excellent radiation are achieved simultaneously.Such design of EMSAA will open the path for integrating antenna fields and electromagnetic surface(EMS)fields.
文摘The current work is an extension of the nonlocal elasticity theory to fractional order thermo-elasticity in semiconducting nanostructure medium with voids.The analysis is made on the reflection phenomena in context of three-phase-lag thermo-elastic model.It is observed that,four-coupled longitudinal waves and an independent shear vertical wave exist in the medium which is dispersive in nature.It is seen that longitudinal waves are damped,and shear wave is un-damped when angular frequency is less than the cut-off frequency.The voids,thermal and non-local parameter affect the dilatational waves whereas shear wave is only depending upon non-local parameter.It is found that reflection coefficients are affected by nonlocal and fractional order parameters.Reflection coefficients are calculated analytically and computed numerically for a material,silicon and discussed graphically in details.The results for local(classical)theory are obtained as a special case.The study may be useful in semiconductor nanostructure,geology and seismology in addition to semiconductor nanostructure devices.
文摘The influence of the most important parameters on the service life of reinforced asphalt overlay with geogrid materials in bending mode was examined by employing the Taguchi method and analysis of variance techniques. The objectives of this experiment was to investigate the effects of grid stiffness, tensile strength, coating type, amount of tack coat, overlay thickness, crack width and stiffnesses of asphalt overlay and existing asphalt concrete on propagation of the reflection cracking. Results indicate that the stiffnesses of cracked layer and overlay are the main significant factors that can directly improve the service life of an overlay against the reflection cracking. Generally, glass grid is more effective in reinforced overlay than polyester grid. Effect of crack width of the existing layer is significant when its magnitude increases from 6 to 9 mm.
文摘Being the core of the Songpan-Ganze block,Zoig(?) Basin is a favorable zone of oil and gas exploration. And it not only is the important deposition area of the northern Songpan-Garze in the Middle-Late Triassic, but also impacts on the formation and evolution of the structural belt.To further understand the Zoig(?) Basin, we reprocessed the 0-20.0 s data of the Tangke-Hezuo deep seismic reflection profiles across the majority
基金Project(2009AA05Z215) supported by the National High-Tech Research and Development Program of China
文摘The radiative properties of three different materials surfaces with one-dimensional microscale random roughness were obtained with the finite difference time domain method(FDTD) and near-to-far-field transformation.The surface height conforms to the Gaussian probability density function distribution.Various computational modeling issues that affect the accuracy of the predicted properties were discussed.The results show that,for perfect electric conductor(PEC) surfaces,as the surface roughness increases,the magnitude of the spike reduces and eventually the spike disappears,and also as the ratio of root mean square roughness to the surface correlation distance increases,the retroreflection becomes evident.The predicted values of FDTD solutions are in good agreement with the ray tracing and integral equation solutions.The overall trend of bidirectional reflection distribution function(BRDF) of PEC surfaces and silicon surfaces is the same,but the silicon's is much less than the former's.The BRDF difference from two polarization modes for the gold surfaces is little for smaller wavelength,but it is much larger for the longer wavelength and the FDTD simulation results agree well with the measured data.In terms of PEC surfaces,as the incident angle increases,the reflectivity becomes more specular.
基金supported by the National Natural Science Foundation of China(61771367)the Science and Technology on Communication Networks Laboratory(6142104190204).
文摘It is always a challenging issue for radar systems to estimate the height of a low-angle target in the multipath propagation environment.The highly deterministic maximum likelihood estimator has a high accuracy,but the errors of the ground reflection coefficient and the reflecting surface height have serious influence on the method.In this paper,a robust es-timation method with less computation burden is proposed based on the compound reflection coefficient multipath model for low-angle targets.The compound reflection coefficient is es-timated from the received data of the array and then a one-di-mension generalized steering vector is constructed to estimate the target height.The algorithm is robust to the reflecting sur-face height error and the ground reflection coefficient error.Fi-nally,the experiment and simulation results demonstrate the validity of the proposed method.
文摘This review presents a reflection-type holographic memory using three-dimensional(3D)speckle-shift multiplexing. First, the schematic of the proposed memory system was described. Then,experimental demonstrations of multiplexing in plane and along the depth direction were presented. The estimated storage capacity of single layer recording was introduced and the maximum storage capacity was discussed. To increase the storage capacity, the multi-layered recording was described. In the multilayered recording, the storage capacity can be increased by appropriate arrangement of holograms in each layer.
基金supported by Jiangsu Key laboratory of Spectral Imaging&Intelligent Sense(Nanjing University of Science and Technology)(30920130122XXX)
文摘For designing camouflage of ground metal target against millimeter wave(MMW) passive detections,based on the radiation and reflection theories related to MMW passive detection and an assumption of high frequency approximation,simplified models of two kinds of ground metal targets are established.Analysis indicates that the reflection from ground is the leading factor on a ground metal target's radiant temperature.In an 8-mm imaging experiment,the uneven distribution of radiant temperatures in horizontal and vertical metal plates is directly perceived.In a radiometer experiment,two positions of a radiometer device are utilized to obtain the radiant temperatures of a horizontal metal in two different grounds(made of asphalt and metal net respectively),which are 295.41 K and 301.55 K,respectively.The experimental results are close to the analytical results calculated from the proposed simplified models,which are 306 K and 296 K,respectively.According to the simplified models,different parts of a vertical plate receive incident MMW of different angles from the asphalt background.The radiant temperature of a vertical metal plate obtained from a radiometer experiment at night is 307 K,and it is in coherent with 304.22 K,the result from calculation using the simplified model of vertical plate.Both the analytic results and the experimental results agree with the uneven distribution of radiant temperature.
基金Humanities and Social Sciences Research Planning Fund Key Project of Anhui Provinceunder Grant No.:SK2014A364namely“The Self in a Postmodernist Context:A Critical Study of Kate Grenville’s Fiction”
文摘Australian women writers have taken active roles in the literary field under the influence of the Feminist Movement around the world since the latter half of the 20 th century. Kate Grenville rose to fame for her early novel Lillian's Story representative of radical feminism. Ten years later in 1994,on reflection,she wrote Dark Places as a complementary work in the point viewof the very man,father and rapist,Albion,who appeared in the earlier novel. By reading the dark places,the inner heart of a patriarchal man and the undercurrent of misogyny in Albion's social world,the author sympathizes with and seeks to understand the inner nature of men,indicating her change in vision from initial radicalism to post- feminism which advocates understanding and harmony between men and women.